
CRYPTOGRAPHY
(Effective from the academic year 2018 -2019)

SEMESTER – VII
Course Code 18CS744 CIE Marks 40

Number of Contact Hours/Week 3:0:0 SEE Marks 60
Total Number of Contact Hours 40 Exam Hours 03

CREDITS –3

Course Learning Objectives: This course (18CS744) will enable students to:

• Define cryptography and its principles
• Explain Cryptography algorithms
• Illustrate Public and Private key cryptography
• Explain Key management, distribution and ceritification
• Explain authentication protocols
• Tell about IPSec

Module – 1 Contact

Hours
Classical Encryption Techniques Symmetric Cipher Model, Cryptography, Cryptanalysis
and Brute-Force Attack, Substitution Techniques, Caesar Cipher, Monoalphabetic Cipher,
Playfair Cipher, Hill Cipher, Polyalphabetic Cipher, One Time Pad. Block Ciphers and the

data encryption standard: Traditional block Cipher structure, stream Ciphers and block
Ciphers, Motivation for the feistel Cipher structure, the feistel Cipher, The data encryption
standard, DES encryption, DES decryption, A DES example, results, the avalanche effect,
the strength of DES, the use of 56-Bit Keys, the nature of the DES algorithm, timing
attacks, Block cipher design principles, number of rounds, design of function F, key
schedule algorithm
Textbook 1: Ch. 2.1,2.2, Ch. 3
RBT: L1, L2

08

Module – 2

Public-Key Cryptography and RSA: Principles of public-key cryptosystems. Public-key
cryptosystems. Applications for public-key cryptosystems, requirements for public-key
cryptosystems. public-key cryptanalysis. The RSA algorithm, desription of the algorithm,
computational aspects, the security of RSA.

Other Public-Key Cryptosystems: Diffie-hellman key exchange, The algorithm, key
exchange protocols, man in the middle attack,Elgamal Cryptographic systems
Textbook 1: Ch. 9, Ch. 10.1,10.2
RBT: L1, L2

08

Module – 3

Elliptic curve arithmetic, abelian groups, elliptic curves over real numbers, elliptic curves
over Zp, elliptic curves overGF(2m), Elliptic curve cryptography, Analog of Diffie-hellman
key exchange, Elliptic curve encryption/ decryption, security of Elliptic curve cryptography,
Pseudorandom number generation based on an asymmetric cipher, PRNG based on RSA.

Key Management and Distribution: Symmetric key distribution using Symmetric
encryption, A key distribution scenario, Hierarchical key control, session key lifetime, a
transparent key control scheme, Decentralized key control, controlling key usage,
Symmetric key distribution using asymmetric encryption, simple secret key distribution,
secret key distribution with confidentiality and authentication, A hybrid scheme, distribution
of public keys, public announcement of public keys, publicly available directory,public key

08

authority, public keys certificates.
Textbook 1: Ch. 10.3-10.5, Ch.14.1 to 14.3
RBT: L1, L2
Module – 4

X-509 certificates. Certificates, X-509 version 3, public key infrastructure .User

Authentication: Remote user Authentication principles, Mutual Authentication, one
wayAuthentication, remote user Authentication using Symmetric encryption, Mutual
Authentication, one way Authentication, Kerberos, Motivation , Kerberos version 4,
Kerberos version 5, Remote user Authentication using Asymmetric encryption, Mutual
Authentication, one way Authentication. Electronic Mail Security: Pretty good privacy,
notation, operational; description, S/MIME, RFC5322, Multipurpose internet mail
extensions, S/MIME functionality, S/MIME messages, S/MIME certificate processing,
enhanced security services, Domain keys identified mail, internet mail architecture, E-Mail
threats, DKIM strategy, DKIM functional flow.
Textbook 1: Ch. 14.4, Ch. 15.1 to 15.4, Ch.19
RBT: L1, L2

08

Module – 5

IP Security: IP Security overview, applications of IPsec, benefits of IPsec, Routing
applications, IPsec documents, IPsec services, transport and tunnel modes, IP Security policy,
Security associations, Security associations database, Security policy database, IP traffic
processing, Encapsulating Security payload, ESP format, encryption and authentication
algorithms, Padding, Anti replay service

Transport and tunnel modes, combining security associations, authentication plus
confidentiality, basic combinations of security associations, internet key exchange, key
determinations protocol, header and payload formats, cryptographic suits.
Textbook 1: Ch. 20.1 to 20.3
RBT: L1, L2

08

Course outcomes: The students should be able to:
• Define cryptography and its principles
• Explain Cryptography algorithms
• Illustrate Public and Private key cryptography
• Explain Key management, distribution and ceritification
• Explain authentication protocols
• Tell about IPSec

Question paper pattern:

• The question paper will have ten questions.
• There will be 2 questions from each module.
• Each question will have questions covering all the topics under a module.
• The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. William Stallings: Cryptography and Network Security, Pearson 6th edition.
Reference Books:

1. V K Pachghare: Cryptography and Information Security, PHI 2nd Edition.

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 1

Module-1:

Classical Encryption Techniques

Symmetric encryption, also referred to as conventional encryption or single-key

encryption, was the only type of encryption in use prior to the development of public-key

encryption in the 1970s. It remains by far the most widely used of the two types of encryption.

1.1 Some Basic Terminology
An original message is known as the plaintext, while the coded message is called the

ciphertext. The process of converting from plaintext to ciphertext is known as enciphering

or encryption; restoring the plaintext from the ciphertext is deciphering or decryption. The

many schemes used for encryption constitute the area of study known as cryptography. Such

a scheme is known as a cryptographic system or a cipher. Techniques used for deciphering

a message without any knowledge of the enciphering details fall into the area of cryptanalysis.

Cryptanalysis is what the layperson calls "breaking the code." The areas of cryptography and

cryptanalysis together are called cryptology.

1.2 Symmetric Cipher Model
A symmetric encryption scheme has five ingredients as shown in figure 1.1

• Plaintext: This is the original intelligible message or data that is fed into the algorithm

as input.

• Encryption algorithm: The encryption algorithm performs various substitutions and

transformations on the plaintext.

• Secret key: The secret key is also input to the encryption algorithm. The key is a value

independent of the plaintext and of the algorithm. The algorithm will produce a

different output depending on the specific key being used at the time. The exact

substitutions and transformations performed by the algorithm depend on the key.

• Ciphertext: This is the scrambled message produced as output. It depends on the

plaintext and the secret key. For a given message, two different keys will produce two

different ciphertexts. The ciphertext is an apparently random stream of data and, as it

stands, is unintelligible.

• Decryption algorithm: This is essentially the encryption algorithm run in reverse. It

takes the ciphertext and the secret key and produces the original plaintext.

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 2

Figure 1.1: Simplified Model of Conventional Encryption

There are two requirements for secure use of conventional encryption:

1. We need a strong encryption algorithm. At a minimum, we would like the algorithm

to be such that an opponent who knows the algorithm and has access to one or more

ciphertexts would be unable to decipher the ciphertext or figure out the key. This

requirement is usually stated in a stronger form: The opponent should be unable to

decrypt ciphertext or discover the key even if he or she is in possession of a number

of ciphertexts together with the plaintext that produced each ciphertext.

2. Sender and receiver must have obtained copies of the secret key in a secure fashion and

must keep the key secure. If someone can discover the key and knows the algorithm,

all communication using this key is readable.

Let us take a closer look at the essential elements of a symmetric encryption scheme, using

Figure 1.2. A source produces a message in plaintext, X = [X1, X2, ..., XM]. The M elements of

X are letters in some finite alphabet. Traditionally, the alphabet usually consisted of the 26

capital letters. Nowadays, the binary alphabet {0, 1} is typically used. For encryption, a key

of the form K = [K1, K2, ..., KJ] is generated. If the key is generated at the message source,

then it must also be provided to the destination by means of some secure channel. Alternatively,

a third party could generate the key and securely deliver it to both source and destination.

Figure 1.2. Model of Conventional Cryptosystem

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 3

With the message X and the encryption key K as input, the encryption algorithm forms the

ciphertext Y = [Y1, Y2, ..., YN].

We can write this as

Y = E(K, X)

This notation indicates that Y is produced by using encryption algorithm E as a function of the

plaintext X, with the specific function determined by the value of the key K.

The intended receiver, in possession of the key, is able to invert the transformation:

X = D(K, Y)

An opponent, observing Y but not having access to K or X, may attempt to recover X or K or

both X and K. It is assumed that the opponent knows the encryption (E) and decryption (D)

algorithms. If the opponent is interested in only this particular message, then the focus of the

effort is to recover X by generating a plaintext estimate X’ . Often, however, the opponent is

interested in being able to read future messages as well, in which case an attempt is made to

recover K by generating an estimate K’.

1.3 Cryptography
Cryptographic systems are characterized along three independent dimensions:

1. The type of operations used for transforming plaintext to ciphertext. All encryption

algorithms are based on two general principles: substitution, in which each element in

the plaintext (bit, letter, group of bits or letters) is mapped into another element, and

transposition, in which elements in the plaintext are rearranged. The fundamental

requirement is that no information be lost (that is, that all operations are reversible).

Most systems, referred to as product systems, involve multiple stages of substitutions

and transpositions.

2. The number of keys used. If both sender and receiver use the same key, the system is

referred to as symmetric, single-key, secret-key, or conventional encryption. If the

sender and receiver use different keys, the system is referred to as asymmetric, two-

key, or public-key encryption.

3. The way in which the plaintext is processed. A block cipher processes the input one

block of elements at a time, producing an output block for each input block. A stream

cipher processes the input elements continuously, producing output one element at a

time, as it goes along.

1.4 Cryptanalysis
There are two general approaches to attacking a conventional encryption scheme:

Cryptanalysis: Cryptanalytic attacks rely on the nature of the algorithm plus perhaps some

knowledge of the general characteristics of the plaintext or even some sample

plaintextciphertext pairs. This type of attack exploits the characteristics of the algorithm to

attempt to deduce a specific plaintext or to deduce the key being used.

Brute-force attack: The attacker tries every possible key on a piece of ciphertext until an

intelligible translation into plaintext is obtained. On average, half of all possible keys must be

tried to achieve success.

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 4

If either type of attack succeeds in deducing the key, the effect is catastrophic: All

future and past messages encrypted with that key are compromised.

Table 1.1. Types of Attacks on Encrypted Messages

An encryption scheme is unconditionally secure if the ciphertext generated by the

scheme does not contain enough information to determine uniquely the corresponding

plaintext, no matter how much ciphertext is available. That is, no matter how much time an

opponent has, it is impossible for him or her to decrypt the ciphertext, simply because the

required information is not there. With the exception of a scheme known as the one-time pad,

there is no encryption algorithm that is unconditionally secure. Therefore, all that the users of

an encryption algorithm can strive for is an algorithm that meets one or both of the following

criteria:

● The cost of breaking the cipher exceeds the value of the encrypted information.

● The time required to break the cipher exceeds the useful lifetime of the information.

An encryption scheme is said to be computationally secure if either of the foregoing

two criteria are met. The rub is that it is very difficult to estimate the amount of effort required

to cryptanalyze ciphertext successfully.

A brute-force attack involves trying every possible key until an intelligible translation

of the ciphertext into plaintext is obtained. On average, half of all possible keys must be tried

to achieve success. Table 1.2 shows how much time is involved for various key spaces.

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 5

Table 1.2. Average Time Required for Exhaustive Key Search

1.5 Substitution Techniques
The two basic building blocks of all encryption techniques are substitution and

transposition.

A substitution technique is one in which the letters of plaintext are replaced by other letters or

by numbers or symbols. If the plaintext is viewed as a sequence of bits, then substitution

involves replacing plaintext bit patterns with ciphertext bit patterns.

1.5.1 Caesar Cipher

The earliest known use of a substitution cipher, and the simplest, was by Julius Caesar.

The Caesar cipher involves replacing each letter of the alphabet with the letter standing three

places further down the alphabet.

For example,

plain: meet me after the toga party

cipher: PHHW PH DIWHU WKH WRJD SDUWB

Note that the alphabet is wrapped around, so that the letter following Z is A. We can define

the transformation by listing all possibilities, as follows:
plain: a b c d e f g h i j k l m n o p q r s t u v w x y z

cipher: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Let us assign a numerical equivalent to each letter:

a b c d e f g h i j k l m n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Then the algorithm can be expressed as follows. For each plaintext letter p, substitute the

ciphertext letter C:

C = E(3, p) = (p + 3) mod 26

A shift may be of any amount, so that the general Caesar algorithm is

C = E(k, p) = (p + k) mod 26

where k takes on a value in the range 1 to 25. The decryption algorithm is simply

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 6

p = D(k, C) = (C k) mod 26

If it is known that a given ciphertext is a Caesar cipher, then a brute-force cryptanalysis is

easily performed: Simply try all the 25 possible keys.

Figure 1.3 shows the results of applying this strategy to the example ciphertext. In this case,

the plaintext leaps out as occupying the third line.

Figure 1.3. Brute-Force Cryptanalysis of Caesar Cipher

Three important characteristics of this problem enabled us to use a brute-force cryptanalysis:

1. The encryption and decryption algorithms are known.

2. There are only 25 keys to try.

3. The language of the plaintext is known and easily recognizable.

In most networking situations, we can assume that the algorithms are known. What

generally makes brute-force cryptanalysis impractical is the use of an algorithm that employs

a large number of keys.

For example, the triple DES algorithm, makes use of a 168-bit key, giving a key space

of 2^168 or greater than 3.7 x 1050 possible keys.

The third characteristic is also significant. If the language of the plaintext is unknown,

then plaintext output may not be recognizable. Furthermore, the input may be abbreviated or

compressed in some fashion, again making recognition difficult.

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 7

For example, Figure 1.4 shows a portion of a text file compressed using an algorithm

called ZIP. If this file is then encrypted with a simple substitution cipher (expanded to include

more than just 26 alphabetic characters), then the plaintext may not be recognized when it is

uncovered in the brute-force cryptanalysis.

Figure 1.4: Sample of Compressed Text

1.5.2 Monoalphabetic Ciphers
With only 25 possible keys, the Caesar cipher is far from secure. A dramatic increase

in the key space can be achieved by allowing an arbitrary substitution.

If, instead, the "cipher" line can be any permutation of the 26 alphabetic characters, then

there are 26! or greater than 4 x 10^26 possible keys. This is 10 orders of magnitude greater

than the key space for DES and would seem to eliminate brute-force techniques for

cryptanalysis. Such an approach is referred to as a monoalphabetic substitution cipher,

because a single cipher alphabet (mapping from plain alphabet to cipher alphabet) is used per

message.

There is, another line of attack. If the cryptanalyst knows the nature of the plaintext (e.g.,

noncompressed English text), then the analyst can exploit the regularities of the language. The

ciphertext to be solved is

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ

VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX

EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

As a first step, the relative frequency of the letters can be determined and compared to

a standard frequency distribution for English, such as is shown in Figure 1.5. If the message

were long enough, this technique alone might be sufficient, but because this is a relatively short

message, we cannot expect an exact match. In any case, the relative frequencies of the letters

in the ciphertext (in percentages) are as follows:

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 8

Figure 1.5. Relative Frequency of Letters in English Text

Comparing this breakdown with Figure 1.5, it seems likely that cipher letters P and Z

are the equivalents of plain letters e and t, but it is not certain which is which. The letters S,

U, O, M, and H are all of relatively high frequency and probably correspond to plain letters

from the set {a, h, i, n, o, r, s}.The letters with the lowest frequencies (namely, A, B, G, Y, I,

J) are likely included in the set {b, j, k, q, v, x, z}.

There are a number of ways to proceed at this point. We could make some tentative

assignments and start to fill in the plaintext to see if it looks like a reasonable "skeleton" of a

message. A more systematic approach is to look for other regularities. For example, certain

words may be known to be in the text. Or we could look for repeating sequences of cipher

letters and try to deduce their plaintext equivalents.

A powerful tool is to look at the frequency of two-letter combinations, known as

digrams. A table similar to Figure 1.5 could be drawn up showing the relative frequency of

digrams. The most common such digram is th. In our ciphertext, the most common digram is

ZW, which appears three times. So we make the correspondence of Z with t and W with h.

Then, by our earlier hypothesis, we can equate P with e. Now notice that the sequence ZWP

appears in the ciphertext, and we can translate that sequence as "the." This is the most frequent

trigram (three-letter combination) in English, which seems to indicate that we are on the right

track.

Next, notice the sequence ZWSZ in the first line. We do not know that these four letters form

a complete word, but if they do, it is of the form th_t. If so, S equates with a.

So far, then, we have

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 9

Only four letters have been identified, but already we have quite a bit of the message. Continued

analysis of frequencies plus trial and error should easily yield a solution from this point. The

complete plaintext, with spaces added between words, follows:

it was disclosed yesterday that several informal but

direct contacts have been made with political

representatives of the viet cong in moscow

Monoalphabetic ciphers are easy to break because they reflect the frequency data of the

original alphabet. A countermeasure is to provide multiple substitutes, known as homophones,

for a single letter. For example, the letter e could be assigned a number of different cipher

symbols, such as 16, 74, 35, and 21, with each homophone used in rotation, or randomly. If

the number of symbols assigned to each letter is proportional to the relative frequency of that

letter, then single-letter frequency information is completely obliterated.

The great mathematician Carl Friedrich Gauss believed that he had devised an

unbreakable cipher using homophones. However, even with homophones, each element of

plaintext affects only one element of ciphertext, and multiple-letter patterns (e.g., digram

frequencies) still survive in the ciphertext, making cryptanalysis relatively straightforward.

1.5.3 Playfair Cipher
The best-known multiple-letter encryption cipher is the Playfair, which treats digrams

in the plaintext as single units and translates these units into ciphertext digrams. The Playfair

algorithm is based on the use of a 5 x 5 matrix of letters constructed using a keyword. Here is

an example, solved by Lord Peter Wimsey in Dorothy Sayers's Have His Carcase

M O N A R

C H Y B D

E F G I/J K

L P Q S T

U V W X Z

In this case, the keyword is monarchy. The matrix is constructed by filling in the letters of the

keyword (minus duplicates) from left to right and from top to bottom, and then filling in the

remainder of the matrix with the remaining letters in alphabetic order. The letters I and J count

as one letter.

Plaintext is encrypted two letters at a time, according to the following rules:

1. Repeating plaintext letters that are in the same pair are separated with a filler letter, such as

x, so that balloon would be treated as ba lx lo on.

2. Two plaintext letters that fall in the same row of the matrix are each replaced by the letter to

the right, with the first element of the row circularly following the last. For example, ar is

encrypted as RM.

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 10

3. Two plaintext letters that fall in the same column are each replaced by the letter beneath,

with the top element of the column circularly following the last. For example, mu is encrypted

as CM.

4. Otherwise, each plaintext letter in a pair is replaced by the letter that lies in its own row and

the column occupied by the other plaintext letter. Thus, hs becomes BP and ea becomes IM (or

JM, as the encipherer wishes).

The Playfair cipher is a great advance over simple monoalphabetic ciphers. For one

thing, whereas there are only 26 letters, there are 26 x 26 = 676 digrams, so that identification

of individual digrams is more difficult. Furthermore, the relative frequencies of individual

letters exhibit a much greater range than that of digrams, making frequency analysis much

more difficult. For these reasons, the Playfair cipher was for a long time considered

unbreakable. It was used as the standard field system by the British Army in World War I and

still enjoyed considerable use by the U.S. Army and other Allied forces during World War II.

Despite this level of confidence in its security, the Playfair cipher is relatively easy to

break because it still leaves much of the structure of the plaintext language intact. A few

hundred letters of ciphertext are generally sufficient.

One way of revealing the effectiveness of the Playfair and other ciphers is shown in

Figure 1.6. The line labeled plaintext plots the frequency distribution of the more than 70,000

alphabetic characters in the Encyclopaedia Brittanica article on cryptology.

This is also the frequency distribution of any monoalphabetic substitution cipher. The

plot was developed in the following way: The number of occurrences of each letter in the text

was counted and divided by the number of occurrences of the letter e (the most frequently used

letter). As a result, e has a relative frequency of 1, t of about 0.76, and so on. The points on the

horizontal axis correspond to the letters in order of decreasing frequency.

Figure 1.6. Relative Frequency of Occurrence of Letters

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 11

1.5.3 Hill Cipher
Another interesting multiletter cipher is the Hill cipher, developed by the

mathematician Lester Hill in 1929. The encryption algorithm takes m successive plaintext

letters and substitutes for them m ciphertext letters. The substitution is determined by m linear

equations in which each character is assigned a numerical value (a = 0, b = 1 ... z = 25). For

m = 3, the system can be described as follows:

where C and P are column vectors of length 3, representing the plaintext and ciphertext, and

K is a 3 x 3 matrix, representing the encryption key. Operations are performed mod 26.

For example, consider the plaintext "paymoremoney" and use the encryption key

The first three letters of the plaintext are represented by the vector

the ciphertext for the entire plaintext is LNSHDLEWMTRW.

Decryption requires using the inverse of the matrix K. The inverse K1 of a matrix K is

defined by the equation KK1 = K1K = I, where I is the matrix that is all zeros except for

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 12

ones along the main diagonal from upper left to lower right. The inverse of a matrix does not

always exist, but when it does, it satisfies the preceding equation. In this case, the inverse is:

This is demonstrated as follows:

It is easily seen that if the matrix K1 is applied to the ciphertext, then the plaintext is

recovered. To explain how the inverse of a matrix is determined, we make an exceedingly brief

excursion into linear algebra.

For any square matrix (m x m) the determinant equals the sum of all the products that can be

formed by taking exactly one element from each row and exactly one element from each

column, with certain of the product terms preceded by a minus sign. For a 2 x 2 matrix

the determinant is k11k22 k12k21. For a 3 x 3 matrix, the value of the determinant is k11k22k33

+ k21k32k13 + k31k12k23 k31k22k13 k21k12k33 k11k32k23. If a square matrix A has a nonzero

determinant, then the inverse of the matrix is computed as [A1]ij = (1)i+j(Dij)/ded(A), where

(Dij) is the subdeterminant formed by deleting the ith row and the jth column of A and det(A)

is the determinant of A. For our purposes, all arithmetic is done mod 26.

In general terms, the Hill system can be expressed as follows:

C = E(K, P) = KP mod 26

P = D(K, P) = K1C mod 26 = K1KP = P

As with Playfair, the strength of the Hill cipher is that it completely hides single-letter

frequencies. Indeed, with Hill, the use of a larger matrix hides more frequency information.

Thus a 3 x 3 Hill cipher hides not only single-letter but also two-letter frequency information.

Although the Hill cipher is strong against a ciphertext-only attack, it is easily broken with a

known plaintext attack. For an m x m Hill cipher, suppose we have m plaintext-ciphertext pairs,

each of length m. We label the pairs

unknown key matrix K. Now define two m x m matrices X = (Pij) and Y = (Cij). Then we can

form the matrix equation Y = KX. If X has an inverse, then we can determine K = YX1. If X

is not invertible, then a new version of X can be formed with additional plaintext- ciphertext

pairs until an invertible X is obtained.

Suppose that the plaintext "friday" is encrypted using a 2 x 2 Hill cipher to yield the ciphertext

PQCFKU. Thus, we know that

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 13

Using the first two plaintext-ciphertext pairs, we have

The inverse of X can be computed:

So

This result is verified by testing the remaining plaintext-ciphertext pair.

1.5.4 Polyalphabetic Ciphers
Another way to improve on the simple monoalphabetic technique is to use different

monoalphabetic substitutions as one proceeds through the plaintext message. The general name

for this approach is polyalphabetic substitution cipher.

All these techniques have the following features in common:

1. A set of related monoalphabetic substitution rules is used.

2. A key determines which particular rule is chosen for a given transformation.

The best known, and one of the simplest, such algorithm is referred to as the Vigenère

cipher. In this scheme, the set of related monoalphabetic substitution rules consists of the 26

Caesar ciphers, with shifts of 0 through 25. Each cipher is denoted by a key letter, which is the

ciphertext letter that substitutes for the plaintext letter a. Thus, a Caesar cipher with a shift of 3

is denoted by the key value d.

To aid in understanding the scheme and to aid in its use, a matrix known as the Vigenère

tableau is constructed (Table 1.3). Each of the 26 ciphers is laid out horizontally, with the key

letter for each cipher to its left. A normal alphabet for the plaintext runs across the top. The

process of encryption is simple: Given a key letter x and a plaintext letter y, the ciphertext letter

is at the intersection of the row labeled x and the column labeled y; in this case the ciphertext

is V.

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 14

Table 1.3. The Modern Vigenère Tableau

To encrypt a message, a key is needed that is as long as the message. Usually, the key

is a repeating keyword. For example, if the keyword is deceptive, the message "we are

discovered save yourself" is encrypted as follows:

key: deceptivedeceptivedeceptive

plaintext: wearediscoveredsaveyourself

ciphertext: ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Decryption is equally simple. The key letter again identifies the row. The position of the

ciphertext letter in that row determines the column, and the plaintext letter is at the top of that

column. The strength of this cipher is that there are multiple ciphertext letters for each plaintext

letter, one for each unique letter of the keyword. Thus, the letter frequency information is

obscured. However, not all knowledge of the plaintext structure is lost. For example, Figure

1.6 shows the frequency distribution for a Vigenère cipher with a keyword of length 9. An

improvement is achieved over the Playfair cipher, but considerable frequency information

remains.

It is instructive to sketch a method of breaking this cipher, because the method reveals some of

the mathematical principles that apply in cryptanalysis.

First, suppose that the opponent believes that the ciphertext was encrypted using either

monoalphabetic substitution or a Vigenère cipher. A simple test can be made to make a

determination. If a monoalphabetic substitution is used, then the statistical properties of the

ciphertext should be the same as that of the language of the plaintext. Thus, referring to Figure

1.5, there should be one cipher letter with a relative frequency of occurrence of about 12.7%,

one with about 9.06%, and so on. If only a single message is available for analysis, we would

not expect an exact match of this small sample with the statistical profile of the plaintext

language. Nevertheless, if the correspondence is close, we can assume a monoalphabetic

substitution.

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 15

If, on the other hand, a Vigenère cipher is suspected, then progress depends on determining the

length of the keyword, as will be seen in a moment. For now, let us concentrate on how the

keyword length can be determined. The important insight that leads to a solution is the

following: If two identical sequences of plaintext letters occur at a distance that is an integer

multiple of the keyword length, they will generate identical ciphertext sequences. In the

foregoing example, two instances of the sequence "red" are separated by nine character

positions. Consequently, in both cases, r is encrypted using key letter e, e is encrypted using

key letter p, and d is encrypted using key letter t. Thus, in both cases the ciphertext sequence is

VTW.

An analyst looking at only the ciphertext would detect the repeated sequences VTW at a

displacement of 9 and make the assumption that the keyword is either three or nine letters in

length. The appearance of VTW twice could be by chance and not reflect identical plaintext

letters encrypted with identical key letters. However, if the message is long enough, there will

be a number of such repeated ciphertext sequences. By looking for common factors in the

displacements of the various sequences, the analyst should be able to make a good guess of the

keyword length. Solution of the cipher now depends on an important insight. If the keyword

length is N, then the cipher, in effect, consists of N monoalphabetic substitution ciphers. For

example, with the keyword DECEPTIVE, the letters in positions 1, 10, 19, and so on are all

encrypted with the same monoalphabetic cipher. Thus, we can use the known frequency

characteristics of the plaintext language to attack each of the monoalphabetic ciphers

separately.

The periodic nature of the keyword can be eliminated by using a nonrepeating keyword that

is as long as the message itself. Vigenère proposed what is referred to as an autokey system,

in which a keyword is concatenated with the plaintext itself to provide a running key. For our

example,

key: deceptivewearediscoveredsav

plaintext: wearediscoveredsaveyourself

ciphertext:ZICVTWQNGKZEIIGASXSTSLVVWLA

Even this scheme is vulnerable to cryptanalysis. Because the key and the plaintext share the

same frequency distribution of letters, a statistical technique can be applied. For example, e

enciphered by e, by Figure 1.5, can be expected to occur with a frequency of (0.127)=2 0.016,

whereas t enciphered by t would occur only about half as often. These regularities can be

exploited to achieve successful cryptanalysis.

The ultimate defense against such a cryptanalysis is to choose a keyword that is as long as the

plaintext and has no statistical relationship to it. Such a system was introduced by an AT&T

engineer named Gilbert Vernam in 1918.

Figure 1.7: Vernam Cipher

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 16

His system works on binary data rather than letters. The system can be expressed succinctly

as follows:

Thus, the ciphertext is generated by performing the bitwise XOR of the plaintext and the key.

Because of the properties of the XOR, decryption simply involves the same bitwise operation:

The essence of this technique is the means of construction of the key. Vernam proposed the

use of a running loop of tape that eventually repeated the key, so that in fact the system worked

with a very long but repeating keyword. Although such a scheme, with a long key, presents

formidable cryptanalytic difficulties, it can be broken with sufficient ciphertext, the use of

known or probable plaintext sequences, or both.

1.5.6 One-Time Pad
An Army Signal Corp officer, Joseph Mauborgne, proposed an improvement to the

Vernam cipher that yields the ultimate in security. Mauborgne suggested using a random key

that is as long as the message, so that the key need not be repeated. In addition, the key is to be

used to encrypt and decrypt a single message, and then is discarded. Each new message requires

a new key of the same length as the new message. Such a scheme, known as a one- time pad,

is unbreakable.

It produces random output that bears no statistical relationship to the plaintext. Because

the ciphertext contains no information whatsoever about the plaintext, there is simply no way

to break the code.

An example should illustrate our point. Suppose that we are using a Vigenère scheme

with 27 characters in which the twenty-seventh character is the space character, but with a one-

time key that is as long as the message. Thus, the tableau of Table 1.3 must be expanded to 27

x 27.

Consider the ciphertext

ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS

We now show two different decryptions using two different keys:

ciphertext: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS

key: pxlmvmsydofuyrvzwc tnlebnecvgdupahfzzlmnyih

plaintext: mr mustard with the candlestick in the hall

ciphertext: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS

key: mfugpmiydgaxgoufhklllmhsqdqogtewbqfgyovuhwt

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 17

plaintext: miss scarlet with the knife in the library

Suppose that a cryptanalyst had managed to find these two keys. Two plausible plaintexts are

produced. How is the cryptanalyst to decide which is the correct decryption (i.e., which is the

correct key)? If the actual key were produced in a truly random fashion, then the cryptanalyst

cannot say that one of these two keys is more likely than the other. Thus, there is no way to

decide which key is correct and therefore which plaintext is correct.

In fact, given any plaintext of equal length to the ciphertext, there is a key that produces

that plaintext. Therefore, if you did an exhaustive search of all possible keys, you would end

up with many legible plaintexts, with no way of knowing which was the intended plaintext.

Therefore, the code is unbreakable. The security of the one-time pad is entirely due to

the randomness of the key. If the stream of characters that constitute the key is truly random,

then the stream of characters that constitute the ciphertext will be truly random. Thus, there are

no patterns or regularities that a cryptanalyst can use to attack the ciphertext.

In theory, we need look no further for a cipher. The one-time pad offers complete security but,

in practice, has two fundamental difficulties:

1. There is the practical problem of making large quantities of random keys. Any heavily used

system might require millions of random characters on a regular basis. Supplying truly random

characters in this volume is a significant task.

2. Even more daunting is the problem of key distribution and protection. For every message

to be sent, a key of equal length is needed by both sender and receiver. Thus, a mammoth key

distribution problem exists.

Because of these difficulties, the one-time pad is of limited utility, and is useful primarily for

low bandwidth channels requiring very high security.

1.6 Block Cipher Principles
A block cipher is an encryption/decryption scheme in which a block of plaintext is

treated as a whole and used to produce a ciphertext block of equal length. Many block ciphers

have a Feistel structure. Such a structure consists of a number of identical rounds of processing.

In each round, a substitution is performed on one half of the data being processed, followed by

a permutation that interchanges the two halves. The original key is expanded so that a different

key is used for each round.

Stream Ciphers and Block Ciphers

A stream cipher is one that encrypts a digital data stream one bit or one byte at a time.

Examples of classical stream ciphers are the autokeyed Vigenère cipher and the Vernam cipher.

A block cipher is one in which a block of plaintext is treated as a whole and used to produce

a ciphertext block of equal length. Typically, a block size of 64 or 128 bits is used. A block

cipher can be used to achieve the same effect as a stream cipher.

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 18

Motivation for the Feistel Cipher Structure
A block cipher operates on a plaintext block of n bits to produce a ciphertext block of n bits.

There are 2n possible different plaintext blocks and, for the encryption to be reversible (i.e., for

decryption to be possible), each must produce a unique ciphertext block. Such a transformation

is called reversible, or nonsingular. The following examples illustrate nonsingular and singular

transformation for n = 2.

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 19

In the latter case, a ciphertext of 01 could have been produced by one of two plaintext blocks.

So if we limit ourselves to reversible mappings, the number of different transformations is 2n!.

Figure 1.8 illustrates the logic of a general substitution cipher for n = 4. A 4-bit input produces

one of 16 possible input states, which is mapped by the substitution cipher into a unique one of

16 possible output states, each of which is represented by 4 ciphertext bits. The encryption and

decryption mappings can be defined by a tabulation, as shown in Table 1.4. This is the most

general form of block cipher and can be used to define any reversible mapping between

plaintext and ciphertext. Feistel refers to this as the ideal block cipher, because it allows for the

maximum number of possible encryption mappings from the plaintext block.

Figure 1.8: General n-bit-n-bit Block Substitution (shown with n = 4)

Table 1.4. Encryption and Decryption Tables for Substitution Cipher

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 20

But there is a practical problem with the ideal block cipher. If a small block size, such as n =

4, is used, then the system is equivalent to a classical substitution cipher. Such systems, as we

have seen, are vulnerable to a statistical analysis of the plaintext. This weakness is not inherent

in the use of a substitution cipher but rather results from the use of a small block size. If n is

sufficiently large and an arbitrary reversible substitution between plaintext and ciphertext is

allowed, then the statistical characteristics of the source plaintext are masked to such an extent

that this type of cryptanalysis is infeasible.

An arbitrary reversible substitution cipher (the ideal block cipher) for a large block size is not

practical, however, from an implementation and performance point of view. For such a

transformation, the mapping itself constitutes the key.

Consider again Table 1.4, which defines one particular reversible mapping from plaintext to

ciphertext for n = 4. The mapping can be defined by the entries in the second column, which

show the value of the ciphertext for each plaintext block. This, in essence, is the key that

determines the specific mapping from among all possible mappings. In this case, using this

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 21

straightforward method of defining the key, the required key length is (4 bits) x (16 rows) = 64

bits.

In general, for an n-bit ideal block cipher, the length of the key defined in this fashion is n x 2n

bits. For a 64-bit block, which is a desirable length to thwart statistical attacks, the

required key length is 64 x 264 = 270 1021bits.

In considering these difficulties, Feistel points out that what is needed is an approximation to

the ideal block cipher system for large n, built up out of components that are easily realizable.

But before turning to Feistel's approach, let us make one other observation. We could use the

general block substitution cipher but, to make its implementation tractable, confine ourselves

to a subset of the possible reversible mappings.

For example, suppose we define the mapping in terms of a set of linear equations. In

the case of n = 4, we have

y1 = k11x1 + k12x2 + k13x3 + k14x4

y2 = k21x1 + k22x2 + k23x3 + k24x4

y3 = k31x1 + k32x2 + k33x3 + k34x4

y4 = k41x1 + k42x2 + k43x3 + k44x4

where the xi are the four binary digits of the plaintext block, the yi are the four binary digits

of the ciphertext block, the kij are the binary coefficients, and arithmetic is mod 2. The key size

is just n2, in this case 16 bits. The danger with this kind of formulation is that it may be

vulnerable to cryptanalysis by an attacker that is aware of the structure of the algorithm.

1.7 The Feistel Cipher
Feistel proposed that we can approximate the ideal block cipher by utilizing the concept

of a product cipher, which is the execution of two or more simple ciphers in sequence in such

a way that the final result or product is cryptographically stronger than any of the component

ciphers. The essence of the approach is to develop a block cipher with a key length of k bits

and a block length of n bits, allowing a total of 2k possible transformations, rather than the 2n!

transformations available with the ideal block cipher.

In particular, Feistel proposed the use of a cipher that alternates substitutions and

permutations. In fact, this is a practical application of a proposal by Claude Shannon to develop

a product cipher that alternates confusion and diffusion functions. We look next at these

concepts of diffusion and confusion and then present the Feistel cipher. But first, it is worth

commenting on this remarkable fact: The Feistel cipher structure, which dates back over a

quarter century and which, in turn, is based on Shannon's proposal of 1945, is the structure used

by many significant symmetric block ciphers currently in use.

1.7.1 Diffusion and Confusion

The terms diffusion and confusion were introduced by Claude Shannon to capture the two basic

building blocks for any cryptographic system.

Shannon's concern was to thwart cryptanalysis based on statistical analysis. The reasoning is

as follows. Assume the attacker has some knowledge of the statistical characteristics of the

plaintext. For example, in a human-readable message in some language, the frequency

distribution of the various letters may be known. Or there may be words or phrases likely to

appear in the message (probable words). If these statistics are in any way reflected in the

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 22

ciphertext, the cryptanalyst may be able to deduce the encryption key, or part of the key, or at

least a set of keys likely to contain the exact key. In what Shannon refers to as a strongly ideal

cipher, all statistics of the ciphertext are independent of the particular key used.

Shannon suggests two methods for frustrating statistical cryptanalysis: diffusion and

confusion. In diffusion, the statistical structure of the plaintext is dissipated into long-range

statistics of the ciphertext. This is achieved by having each plaintext digit affect the value of

many ciphertext digits; generally this is equivalent to having each ciphertext digit be affected

by many plaintext digits. An example of diffusion is to encrypt a message M = m1, m2, m3,...

of characters with an averaging operation:

adding k successive letters to get a ciphertext letter yn. One can show that the statistical

structure of the plaintext has been dissipated. Thus, the letter frequencies in the ciphertext will

be more nearly equal than in the plaintext; the digram frequencies will also be more nearly

equal, and so on. In a binary block cipher, diffusion can be achieved by repeatedly performing

some permutation on the data followed by applying a function to that permutation; the effect

is that bits from different positions in the original plaintext contribute to a single bit of

ciphertext.

Every block cipher involves a transformation of a block of plaintext into a block of ciphertext,

where the transformation depends on the key. The mechanism of diffusion seeks to make the

statistical relationship between the plaintext and ciphertext as complex as possible in order to

thwart attempts to deduce the key.

On the other hand, confusion seeks to make the relationship between the statistics of the

ciphertext and the value of the encryption key as complex as possible, again to thwart attempts

to discover the key. Thus, even if the attacker can get some handle on the statistics of the

ciphertext, the way in which the key was used to produce that ciphertext is so complex as to

make it difficult to deduce the key. This is achieved by the use of a complex substitution

algorithm. In contrast, a simple linear substitution function would add little confusion.

1.7.2 Feistel Cipher Structure

Figure 1.9 depicts the structure proposed by Feistel. The inputs to the encryption algorithm are

a plaintext block of length 2w bits and a key K. The plaintext block is divided into two halves,

L0 and R0. The two halves of the data pass through n rounds of processing and then combine

to produce the ciphertext block. Each round i has as inputs Li-1 and Ri-1, derived from the

previous round, as well as a subkey Ki, derived from the overall K. In general, the subkeys Ki

are different from K and from each other.

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 23

Figure 1.9 : Feistel Encryption and Decryption (16 rounds)

All rounds have the same structure. A substitution is performed on the left half of the data.

This is done by applying a round function F to the right half of the data and then taking the

exclusive-OR of the output of that function and the left half of the data. The round function has

the same general structure for each round but is parameterized by the round subkey Ki.

Following this substitution, a permutation is performed that consists of the interchange of the

two halves of the data. This structure is a particular form of the substitution-permutation

network (SPN) proposed by Shannon.

The exact realization of a Feistel network depends on the choice of the following parameters

and design features:

● Block size: Larger block sizes mean greater security (all other things being equal) but

reduced encryption/decryption speed for a given algorithm. The greater security is achieved by

greater diffusion Traditionally, a block size of 64 bits has been considered a reasonable

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 24

tradeoff and was nearly universal in block cipher design. However, the new AES uses a 128-

bit block size.

● Key size: Larger key size means greater security but may decrease encryption/decryption

speed. The greater security is achieved by greater resistance to brute-force attacks and greater

confusion. Key sizes of 64 bits or less are now widely considered to be inadequate, and 128

bits has become a common size.

● Number of rounds: The essence of the Feistel cipher is that a single round offers inadequate

security but that multiple rounds offer increasing security. A typical size is 16 rounds.

● Subkey generation algorithm: Greater complexity in this algorithm should lead to greater

difficulty of cryptanalysis.

● Round function: Again, greater complexity generally means greater resistance to

cryptanalysis.

There are two other considerations in the design of a Feistel cipher:

● Fast software encryption/decryption: In many cases, encryption is embedded in

applications or utility functions in such a way as to preclude a hardware implementation.

Accordingly, the speed of execution of the algorithm becomes a concern.

● Ease of analysis: Although we would like to make our algorithm as difficult as possible to

cryptanalyze, there is great benefit in making the algorithm easy to analyze. That is, if the

algorithm can be concisely and clearly explained, it is easier to analyze that algorithm for

cryptanalytic vulnerabilities and therefore develop a higher level of assurance as to its

strength. DES, for example, does not have an easily analyzed functionality.

1.7.3 Feistel Decryption Algorithm

The process of decryption with a Feistel cipher is essentially the same as the encryption process.

The rule is as follows: Use the ciphertext as input to the algorithm, but use the subkeys Ki in

reverse order. That is, use Kn in the first round, Kn-1 in the second round, and so on until K1

is used in the last round. This is a nice feature because it means we need not implement two

different algorithms, one for encryption and one for decryption.

To see that the same algorithm with a reversed key order produces the correct result,

consider Figure 1.9, which shows the encryption process going down the left-hand side and the

decryption process going up the right-hand side for a 16-round algorithm (the result would be

the same for any number of rounds). For clarity, we use the notation LEi and REi for data

traveling through the encryption algorithm and LDi and RDi for data traveling through the

decryption algorithm. The diagram indicates that, at every round, the intermediate value of

the decryption process is equal to the corresponding value of the encryption process with the

two halves of the value swapped. To put this another way, let the output of the ith encryption

round be LEi||REi (Li concatenated with Ri). Then the corresponding input to the (16 i) th

decryption round is REi||LEi or, equivalently, RD16- i||LD16-i.

Let us walk through Figure 1.9 to demonstrate the validity of the preceding assertions.

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 25

After the last iteration of the encryption process, the two halves of the output are swapped, so

that the ciphertext is RE16||LE16. The output of that round is the ciphertext. Now take that

ciphertext and use it as input to the same algorithm. The input to the first round is RE16||LE16,

which is equal to the 32-bit swap of the output of the sixteenth round of the encryption process.

Now we would like to show that the output of the first round of the decryption process is equal

to a 32- bit swap of the input to the sixteenth round of the encryption process.

First, consider the encryption process.

We see that

LE16 = RE15

RE16 = LE15 x F(RE15, K16)

On the decryption side,

LD1 = RD0 = LE16 = RE15

RD1 = LD0 x F(RD0, K16)

= RE16 x F(RE15, K16)

= [LE15 x F(RE15, K16)] x F(RE15, K16)

The XOR has the following properties:

[A x B] x C = A x [B x C]

D x D = 0

E x 0 = E

Thus, we have LD1 = RE15 and RD1 = LE15. Therefore, the output of the first round of the

decryption process is LE15||RE15, which is the 32-bit swap of the input to the sixteenth round

of the encryption.

This correspondence holds all the way through the 16 iterations, as is easily shown. We can

cast this process in general terms. For the ith iteration of the encryption algorithm,

LEi = REi-1

REi =LEi-1 x F(REi-1, Ki)

Rearranging terms,

REi-1 = LEi

LEi-1 = REi x F(REi-1, Ki2 = REi x F(LEi, Ki)

Thus, we have described the inputs to the ith iteration as a function of the outputs, and these

equations confirm the assignments shown in the right-hand side of Figure 1.9.

Finally, we see that the output of the last round of the decryption process is RE0||LE0. A 32-

bit swap recovers the original plaintext, demonstrating the validity of the Feistel decryption

process.

Note that the derivation does not require that F be a reversible function. To see this, take a

limiting case in which F produces a constant output (e.g., all ones) regardless of the values of

its two arguments. The equations still hold.

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 26

1.8 The Data Encryption Standard
The most widely used encryption scheme is based on the Data Encryption Standard (DES)

adopted in 1977 by the National Bureau of Standards, now the National Institute of Standards

and Technology (NIST), as Federal Information Processing Standard 46 (FIPS PUB 46). The

algorithm itself is referred to as the Data Encryption Algorithm (DEA).

For DES, data are encrypted in 64-bit blocks using a 56-bit key. The algorithm transforms 64-

bit input in a series of steps into a 64-bit output. The same steps, with the same key, are used

to reverse the encryption. The DES enjoys widespread use. It has also been the subject of

much controversy concerning how secure the DES is. To appreciate the nature of the

controversy, let us quickly review the history of the DES.

In the late 1960s, IBM set up a research project in computer cryptography led by Horst Feistel.

The project concluded in 1971 with the development of an algorithm with the designation

LUCIFER, which was sold to Lloyd's of London for use in a cash-dispensing system, also

developed by IBM.

LUCIFER is a Feistel block cipher that operates on blocks of 64 bits, using a key size of 128

bits. Because of the promising results produced by the LUCIFER project, IBM embarked on

an effort to develop a marketable commercial encryption product that ideally could be

implemented on a single chip. The effort was headed by Walter Tuchman and Carl Meyer, and

it involved not only IBM researchers but also outside consultants and technical advice from

NSA. The outcome of this effort was a refined version of LUCIFER that was more resistant to

cryptanalysis but that had a reduced key size of 56 bits, to fit on a single chip.

In 1973, the National Bureau of Standards (NBS) issued a request for proposals for a national

cipher standard. IBM submitted the results of its Tuchman-Meyer project. This was by far the

best algorithm proposed and was adopted in 1977 as the Data Encryption Standard.

Before its adoption as a standard, the proposed DES was subjected to intense criticism, which

has not subsided to this day. Two areas drew the critics' fire. First, the key length in IBM's

original LUCIFER algorithm was 128 bits, but that of the proposed system was only 56 bits,

an enormous reduction in key size of 72 bits. Critics feared that this key length was too short

to withstand brute-force attacks. The second area of concern was that the design criteria for the

internal structure of DES, the S-boxes, were classified. Thus, users could not be sure that the

internal structure of DES was free of any hidden weak points that would enable NSA to

decipher messages without benefit of the key. Subsequent events, particularly the recent work

on differential cryptanalysis, seem to indicate that DES has a very strong internal structure.

Furthermore, according to IBM participants, the only changes that were made to the proposal

were changes to the S-boxes, suggested by NSA, that removed vulnerabilities identified in

the course of the evaluation process.

Whatever the merits of the case, DES has flourished and is widely used, especially in financial

applications. In 1994, NIST reaffirmed DES for federal use for another five years; NIST

recommended the use of DES for applications other than the protection of classified

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 27

information. In 1999, NIST issued a new version of its standard (FIPS PUB 46-3) that indicated

that DES should only be used for legacy systems and that triple DES (which in essence involves

repeating the DES algorithm three times on the plaintext using two or three different keys to

produce the ciphertext) be used. We study triple DES. Because the underlying encryption and

decryption algorithms are the same for DES and triple DES, it remains important to understand

the DES cipher.

1.8.1 DES Encryption

The overall scheme for DES encryption is illustrated in Figure 1.10. As with any encryption

scheme, there are two inputs to the encryption function: the plaintext to be encrypted and the

key. In this case, the plaintext must be 64 bits in length and the key is 56 bits in length.

Figure 1.10: General description of DES encryption algorithm

Looking at the left-hand side of the figure, we can see that the processing of the plaintext

proceeds in three phases. First, the 64-bit plaintext passes through an initial permutation (IP)

that rearranges the bits to produce the permuted input. This is followed by a phase consisting

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 28

of 16 rounds of the same function, which involves both permutation and substitution functions.

The output of the last (sixteenth) round consists of 64 bits that are a function of the input

plaintext and the key. The left and right halves of the output are swapped to produce the

preoutput. Finally, the preoutput is passed through a permutation (IP-1) that is the inverse of

the initial permutation function, to produce the 64-bit ciphertext. With the exception of the

initial and final permutations, DES has the exact structure of a Feistel cipher.

The right-hand portion of Figure 1.10 shows the way in which the 56-bit key is used. Initially,

the key is passed through a permutation function. Then, for each of the 16 rounds, a subkey

(Ki) is produced by the combination of a left circular shift and a permutation. The permutation

function is the same for each round, but a different subkey is produced because of the repeated

shifts of the key bits.

Initial Permutation

The initial permutation and its inverse are defined by tables, as shown in Tables 1.5a and 1.5b,

respectively. The tables are to be interpreted as follows. The input to a table consists of 64 bits

numbered from 1 to 64. The 64 entries in the permutation table contain a permutation of the

numbers from 1 to 64. Each entry in the permutation table indicates the position of a numbered

input bit in the output, which also consists of 64 bits.

Table 1.5. Permutation Tables for DES

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 29

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 30

Details of Single Round

Figure 1.11 shows the internal structure of a single round. Again, begin by focusing on the left-

hand side of the diagram. The left and right halves of each 64-bit intermediate value are treated

as separate 32- bit quantities, labeled L (left) and R (right). As in any classic Feistel cipher, the

overall processing at each round can be summarized in the following formulas:

Li = Ri-1

Ri = Li-1 x F(Ri-1, Ki)

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 31

Figure 1.11: Single Round of DES Algorithm

The round key Ki is 48 bits. The R input is 32 bits. This R input is first expanded to 48 bits by

using a table that defines a permutation plus an expansion that involves duplication of 16 of the

R bits (Table 1.5c). The resulting 48 bits are XORed with Ki. This 48-bit result passes through

a substitution function that produces a 32-bit output, which is permuted as defined by Table

1.5d. The role of the S-boxes in the function F is illustrated in Figure 1.12. The substitution

consists of a set of eight S-boxes, each of which accepts 6 bits as input and produces 4 bits as

output. These transformations are defined in Table 1.6, which is interpreted as follows: The first

and last bits of the input to box Si form a 2-bit binary number to select one of four substitutions

defined by the four rows in the table for Si. The middle four bits select one of the sixteen

columns. The decimal value in the cell selected by the row and column is then converted to its

4-bit representation to produce the output. For example, in S1 for input 011001, the row is 01

(row 1) and the column is 1100 (column 12). The value in row 1, column 12 is 9, so the output

is 1001.

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 32

Figure 1.12: Calculation of F(R, K)

Table 1.6: Definition of DES S-Boxes

Each row of an S-box defines a general reversible substitution. The operation of the S-boxes

is worth further comment. Ignore for the moment the contribution of the key (Ki). If you

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 33

examine the expansion table, you see that the 32 bits of input are split into groups of 4 bits,

and then become groups of 6 bits by taking the outer bits from the two adjacent groups. For

example, if part of the input word is

... efgh ijkl mnop ...

this becomes

... defghi hijklm lmnopq ...

The outer two bits of each group select one of four possible substitutions (one row of an S-

box). Then a 4-bit output value is substituted for the particular 4-bit input (the middle four input

bits). The 32-bit output from the eight S-boxes is then permuted, so that on the next round the

output from each S-box immediately affects as many others as possible.

Key Generation

Returning to Figures 1.10 and 1.11, we see that a 64-bit key is used as input to the

algorithm. The bits of the key are numbered from 1 through 64; every eighth bit is ignored, as

indicated by the lack of shading in Table 1.7a. The key is first subjected to a permutation

governed by a table labeled Permuted Choice One (Table 1.7b). The resulting 56-bit key is then

treated as two 28-bit quantities, labeled C0 and D0. At each round, Ci-1 and Di-1 are separately

subjected to a circular left shift, or rotation, of 1 or 2 bits, as governed by Table 1.7d. These

shifted values serve as input to the next round. They also serve as input to Permuted Choice

Two (Table 1.7c), which produces a 48-bit output that serves as input to the function F(Ri-1,

Ki).

Table 1.7: DES Key Schedule Calculation

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 34

DES Decryption

As with any Feistel cipher, decryption uses the same algorithm as encryption, except that the

application of the subkeys is reversed.

The Avalanche Effect

A desirable property of any encryption algorithm is that a small change in either the plaintext

or the key should produce a significant change in the ciphertext. In particular, a change in one

bit of the plaintext or one bit of the key should produce a change in many bits of the

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 35

ciphertext. If the change were small, this might provide a way to reduce the size of the

plaintext or key space to be searched.

DES exhibits a strong avalanche effect. Table 1.8 shows some results taken from. In Table

1.8a, two plaintexts that differ by one bit were used:

Table 1.8 : Avalanche effect in DES

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 36

The Table 1.8a shows that after just three rounds, 21 bits differ between the two blocks. On

completion, the two ciphertexts differ in 34 bit positions. Table 1.8b shows a similar test in

which a single plaintext is input:

1.9 The Strength of DES
Since its adoption as a federal standard, there have been lingering concerns about the level of

security provided by DES. These concerns, by and large, fall into two areas: key size and the

nature of the algorithm.

The Use of 56-Bit Keys

With a key length of 56 bits, there are 2^56 possible keys, which is approximately 7.2 x 10^16.

Thus, on the face of it, a brute-force attack appears impractical. Assuming that, on average,

half the key space has to be searched, a single machine performing one DES encryption per

microsecond would take more than a thousand years to break the cipher.

However, the assumption of one encryption per microsecond is overly conservative. As far

back as 1977, Diffie and Hellman postulated that the technology existed to build a parallel

machine with 1 million encryption devices, each of which could perform one encryption per

microsecond. This would bring the average search time down to about 10 hours. The authors

estimated that the cost would be about $20 million in 1977 dollars.

DES finally and definitively proved insecure in July 1998, when the Electronic Frontier

Foundation (EFF) announced that it had broken a DES encryption using a special-purpose

"DES cracker" machine that was built for less than $250,000. The attack took less than three

days. The EFF has published a detailed description of the machine, enabling others to build

their own cracker. And, of course, hardware prices will continue to drop as speeds increase,

making DES virtually worthless.

It is important to note that there is more to a key-search attack than simply running through

all possible keys. Unless known plaintext is provided, the analyst must be able to recognize

plaintext as plaintext. If the message is just plain text in English, then the result pops out easily,

although the task of recognizing English would have to be automated. If the text message has

been compressed before encryption, then recognition is more difficult. And if the message is

some more general type of data, such as a numerical file, and this has been compressed, the

problem becomes even more difficult to automate. Thus, to supplement the brute-force

approach, some degree of knowledge about the expected plaintext is needed, and some means

of automatically distinguishing plaintext from garble is also needed. The EFF approach

addresses this issue as well and introduces some automated techniques that would be effective

in many contexts.

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 37

The Nature of the DES Algorithm

Another concern is the possibility that cryptanalysis is possible by exploiting the characteristics

of the DES algorithm. The focus of concern has been on the eight substitution tables, or S-

boxes, that are used in each iteration. Because the design criteria for these boxes, and indeed

for the entire algorithm, were not made public, there is a suspicion that the boxes were

constructed in such a way that cryptanalysis is possible for an opponent who knows the

weaknesses in the S-boxes. This assertion is tantalizing, and over the years a number of

regularities and unexpected behaviors of the S-boxes have been discovered. Despite this, no

one has so far succeeded in discovering the supposed fatal weaknesses in the S-boxes.

Timing Attacks

A timing attack is one in which information about the key or the plaintext is obtained by

observing how long it takes a given implementation to perform decryptions on various

ciphertexts. A timing attack exploits the fact that an encryption or decryption algorithm often

takes slightly different amounts of time on different inputs.The Hamming weight (number of

bits equal to one) of the secret key. This is a long way from knowing the actual key, but it is an

intriguing first step. The authors conclude that DES appears to be fairly resistant to a successful

timing attack but suggest some avenues to explore. Although this is an interesting line of attack,

it so far appears unlikely that this technique will ever be successful against DES or more

powerful symmetric ciphers such as triple DES and AES.

1.10 Block Cipher Design Principles
Number of Rounds

The cryptographic strength of a Feistel cipher derives from three aspects of the design: the

number of rounds, the function F, and the key schedule algorithm. Let us look first at the choice

of the number of rounds.

The greater the number of rounds, the more difficult it is to perform cryptanalysis, even for a

relatively weak F. In general, the criterion should be that the number of rounds is chosen so

that known cryptanalytic efforts require greater effort than a simple brute-force key search

attack. This criterion was certainly used in the design of DES. Schneier observes that for 16-

round DES, a differential cryptanalysis attack is slightly less efficient than brute force: the

differential cryptanalysis attack requires 2^55.1 operations, whereas brute force requires 2^55.

If DES had 15 or fewer rounds, differential cryptanalysis would require less effort than brute-

force key search.

This criterion is attractive because it makes it easy to judge the strength of an algorithm and

to compare different algorithms. In the absence of a cryptanalytic breakthrough, the strength

of any algorithm that satisfies the criterion can be judged solely on key length.

Design of Function F

The heart of a Feistel block cipher is the function F. As we have seen, in DES, this function

relies on the use of S-boxes. This is also the case for most other symmetric block ciphers.

However, we can make some general comments about the criteria for designing F. After that,

we look specifically at S-box design.

Cryptography Module-1

 Prepared by Divyashree H S Dept. Of CSE, BrCE 38

Design Criteria for F

The function F provides the element of confusion in a Feistel cipher. Thus, it must be difficult

to "unscramble" the substitution performed by F. One obvious criterion is that F be nonlinear,

as we discussed previously. The more nonlinear F, the more difficult any type of cryptanalysis

will be. There are several measures of nonlinearity, which are beyond the scope of this book. In

rough terms, the more difficult it is to approximate F by a set of linear equations, the more

nonlinear F is. Several other criteria should be considered in designing F. We would like the

algorithm to have good avalanche properties. Recall that, in general, this means that a change

in one bit of the input should produce a change in many bits of the output. A more stringent

version of this is the strict avalanche criterion (SAC), which states that any output bit j of an

S-box should change with probability 1/2 when any single input bit i is inverted for all i, j.

Although SAC is expressed in terms of Sboxes, a similar criterion could be applied to F as a

whole. This is important when considering designs

that do not include S-boxes.

Another criterion proposed is the bit independence criterion (BIC), which states that output

bits j and k should change independently when any single input bit i is inverted, for all i, j, and

k. The SAC and BIC criteria appear to strengthen the effectiveness of the confusion function.

Key Schedule Algorithm

A final area of block cipher design, and one that has received less attention than S-box design,

is the key schedule algorithm. With any Feistel block cipher, the key is used to generate one

subkey for each round. In general, we would like to select subkeys to maximize the difficulty

of deducing individual subkeys and the difficulty of working back to the main key. No general

principles for this have yet been promulgated.

Hall suggests that, at minimum, the key schedule should guarantee key/ciphertext Strict

Avalanche Criterion and Bit Independence Criterion.

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 1

Module-2:

Public-Key Cryptography and RSA, Other Public-Key

Cryptosystems

The development of public-key cryptography is the greatest and perhaps the only true

revolution in the entire history of cryptography. From its earliest beginnings to modern times,

virtually all cryptographic systems have been based on the elementary tools of substitution and

permutation. After millennia of working with algorithms that could essentially be calculated

by hand, a major advance in symmetric cryptography occurred with the development of the

rotor encryption/decryption machine.

The electromechanical rotor enabled the development of fiendishly complex cipher

systems. With the availability of computers, even more complex systems were devised, the

most prominent of which was the Lucifer effort at IBM that culminated in the Data

Encryption Standard (DES). But both rotor machines and DES, although representing

significant advances, still relied on the bread-and-butter tools of substitution and permutation.

Public-key cryptography provides a radical departure from all that has gone before.

For one thing, public key algorithms are based on mathematical functions rather than on

substitution and permutation. More important, public-key cryptography is asymmetric,

involving the use of two separate keys, in contrast to symmetric encryption, which uses only

one key. The use of two keys has profound consequences in the areas of confidentiality, key

distribution, and authentication.

Before proceeding, we should mention several common misconceptions concerning

public-key encryption. One such misconception is that public-key encryption is more secure

from cryptanalysis than is symmetric encryption. In fact, the security of any encryption scheme

depends on the length of the key and the computational work involved in breaking a cipher.

There is nothing in principle about either symmetric or public-key encryption that makes one

superior to another from the point of view of resisting cryptanalysis.

Second misconception is that public-key encryption is a general-purpose technique that

has made symmetric encryption obsolete. On the contrary, because of the computational

overhead of current public-key encryption schemes, there seems no foreseeable likelihood that

symmetric encryption will be abandoned. As one of the inventors of public-key encryption has

put it "the restriction of public-key cryptography to key management and signature applications

is almost universally accepted."

2.1 Principles of Public-Key Cryptosystems
The concept of public-key cryptography evolved from an attempt to attack two of the

most difficult problems associated with symmetric encryption. The first problem is that of

key distribution.

Key distribution under symmetric encryption requires either

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 2

(1) that two communicants already share a key, which somehow has been distributed to them;

or

(2) the use of a key distribution center.

Whitfield Diffie, one of the discoverers of public-key encryption (along with Martin

Hellman, both at Stanford University at the time), reasoned that this second requirement

negated the very essence of cryptography: the ability to maintain total secrecy over your own

communication.

As Diffie put it , "what good would it do after all to develop impenetrable

cryptosystems, if their users were forced to share their keys with a KDC that could be

compromised by either burglary or subpoena?"

The second problem that Diffie pondered, and one that was apparently unrelated to

the first was that of "digital signatures." If the use of cryptography was to become widespread,

not just in military situations but for commercial and private purposes, then electronic messages

and documents would need the equivalent of signatures used in paper documents. That is, could

a method be devised that would stipulate, to the satisfaction of all parties, that a digital message

had been sent by a particular person? This is a somewhat broader requirement than that of

authentication, and its characteristics and ramifications.

2.1.1 Public-Key Cryptosystems

Asymmetric algorithms rely on one key for encryption and a different but related key

for decryption.

These algorithms have the following important characteristic:

● It is computationally infeasible to determine the decryption key given only knowledge of

the cryptographic algorithm and the encryption key.

In addition, some algorithms, such as RSA, also exhibit the following characteristic:

● Either of the two related keys can be used for encryption, with the other used for

decryption.

A public-key encryption scheme has six ingredients

• Plaintext: This is the readable message or data that is fed into the algorithm as input.

• Encryption algorithm: The encryption algorithm performs various transformations on

the plaintext.

• Public and private keys: This is a pair of keys that have been selected so that if one

is used for encryption, the other is used for decryption. The exact transformations

performed by the algorithm depend on the public or private key that is provided as

input.

• Ciphertext: This is the scrambled message produced as output. It depends on the

plaintext and the key. For a given message, two different keys will produce two

different ciphertexts.

• Decryption algorithm: This algorithm accepts the ciphertext and the matching key and

produces the original plaintext.

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 3

Figure 2.1: Public-Key Cryptography

The essential steps are the following:

1. Each user generates a pair of keys to be used for the encryption and decryption of

messages.

2. Each user places one of the two keys in a public register or other accessible file. This is the

public key. The companion key is kept private. As Figure 2.1a suggests, each user maintains

a collection of public keys obtained from others.

3. If Bob wishes to send a confidential message to Alice, Bob encrypts the message using

Alice's public key.

4. When Alice receives the message, she decrypts it using her private key. No other recipient

can decrypt the message because only Alice knows Alice's private key.

With this approach, all participants have access to public keys, and private keys are

generated locally by each participant and therefore need never be distributed. As long as a

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 4

user's private key remains protected and secret, incoming communication is secure. At any

time, a system can change its private key and publish the companion public key to replace its

old public key.

Table 2.1 summarizes some of the important aspects of symmetric and public-key

encryption. To discriminate between the two, we refer to the key used in symmetric encryption

as a secret key. The two keys used for asymmetric encryption are referred to as the public

key and the private key. Invariably, the private key is kept secret, but it is referred to as a

private key rather than a secret key to avoid confusion with symmetric encryption.

Table 2.1: Conventional and Public-Key Encryption

Let us take a closer look at the essential elements of a public-key encryption scheme,

using Figure 2.2. There is some source A that produces a message in plaintext, X =[X1, X2,...,

XM,]. The M elements of X are letters in some finite alphabet. The message is intended for

destination B. B generates a related pair of keys: a public key, PUb, and a private key, PUb.

PUb is known only to B, whereas PUb is publicly available and therefore accessible by A.

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 5

Figure 2.2: Public-Key Cryptosystem: Confidentiality

With the message X and the encryption key PUb as input, A forms the ciphertext

Y = [Y1, Y2,..., YN]:

Y = E(PUb, X)

The intended receiver, in possession of the matching private key, is able to invert the

transformation:

X = D(PRb, Y)

An adversary, observing Y and having access to PUb but not having access to PRb or X, must

attempt to recover X and/or PRb. It is assumed that the adversary does have knowledge of the

encryption (E) and decryption (D) algorithms.

If the adversary is interested only in this particular message, then the focus of effort is

to recover X, by generating a plaintext estimate Often, however, the adversary is interested in

being able to read future messages as well, in which case an attempt is made to recover

PRb by generating an estimate .

We mentioned earlier that either of the two related keys can be used for encryption,

with the other being used for decryption. This enables a rather different cryptographic scheme

to be implemented. Whereas the scheme illustrated in Figure 2.2 provides confidentiality,

Figures 2.1b and 2.3 show the use of public-key encryption to provide authentication:

Y = E(PRa, X)

Y = E(PUa, Y)

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 6

Figure 2.3: Public-Key Cryptosystem: Authentication

In this case, A prepares a message to B and encrypts it using A's private key before

transmitting it. B can decrypt the message using A's public key. Because the message was

encrypted using A's private key, only A could have prepared the message. Therefore, the entire

encrypted message serves as a digital signature. In addition, it is impossible to alter the message

without access to A's private key, so the message is authenticated both in terms of source and

in terms of data integrity.

In the preceding scheme, the entire message is encrypted, which, although validating

both author and contents, requires a great deal of storage. Each document must be kept in

plaintext to be used for practical purposes. A copy also must be stored in ciphertext so that

the origin and contents can be verified in case of a dispute. A more efficient way of achieving

the same results is to encrypt a small block of bits that is a function of the document. Such a

block, called an authenticator, must have the property that it is infeasible to change the

document without changing the authenticator. If the authenticator is encrypted with the sender's

private key, it serves as a signature that verifies origin, content, and sequencing.

It is important to emphasize that the encryption process depicted in Figures 2.1b and

2.3 does not provide confidentiality. That is, the message being sent is safe from alteration

but not from eavesdropping. This is obvious in the case of a signature based on a portion of the

message, because the rest of the message is transmitted in the clear. Even in the case of

complete encryption, as shown in Figure 2.3, there is no protection of confidentiality because

any observer can decrypt the message by using the sender's public key.

It is possible to provide both the authentication function and confidentiality by a double

use of the public-key scheme (Figure 2.4):

Z = E(PUb, E(PRa, X))

X = D(PUa, E(PRb, Z))

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 7

Figure 2.4: Public-Key Cryptosystem: Authentication and Secrecy

In this case, we begin as before by encrypting a message, using the sender's private key.

This provides the digital signature. Next, we encrypt again, using the receiver's public key. The

final ciphertext can be decrypted only by the intended receiver, who alone has the matching

private key. Thus, confidentiality is provided. The disadvantage of this approach is that the

public-key algorithm, which is complex, must be exercised four times rather than two in each

communication.

2.1.2 Applications for Public-Key Cryptosystems

Before proceeding, we need to clarify one aspect of public-key cryptosystems that is

otherwise likely to lead to confusion. Public-key systems are characterized by the use of a

cryptographic algorithm with two keys, one held private and one available publicly. Depending

on the application, the sender uses either the sender's private key or the receiver's public key,

or both, to perform some type of cryptographic function. In broad terms, we can classify the

use of public-key cryptosystems into three categories:

● Encryption/decryption: The sender encrypts a message with the recipient's public key.

● Digital signature: The sender "signs" a message with its private key. Signing is achieved by

a cryptographic algorithm applied to the message or to a small block of data that is a function

of the message.

● Key exchange: Two sides cooperate to exchange a session key. Several different approaches

are possible, involving the private key(s) of one or both parties.

Some algorithms are suitable for all three applications, whereas others can be used only for one

or two of these applications. Table 2.2 indicates the applications supported by the algorithms.

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 8

Table 2.2: Applications for Public-Key Cryptosystems

2.1.3 Requirements for Public-Key Cryptography

The cryptosystem illustrated in Figures 9.2 through 9.4 depends on a cryptographic algorithm

based on two related keys. Diffie and Hellman postulated this system without demonstrating

that such algorithms exist. However, they did lay out the conditions that such algorithms must

fulfil:

1. It is computationally easy for a party B to generate a pair (public key PUb, private key

PRb).

2. It is computationally easy for a sender A, knowing the public key and the message to be

encrypted, M, to generate the corresponding ciphertext: C = E(PUb, M)

3. It is computationally easy for the receiver B to decrypt the resulting ciphertext using the

private key to recover the original message: M = D(PRb, C) = D[PRb, E(PUb, M)]

4. It is computationally infeasible for an adversary, knowing the public key, PUb, to

determine the private key, PRb.

5. It is computationally infeasible for an adversary, knowing the public key, PUb, and a

ciphertext, C, to recover the original message, M.

We can add a sixth requirement that, although useful, is not necessary for all public-key

applications:

6. The two keys can be applied in either order:

M = D[PUb, E(PRb, M)] = D[PRb, E(PUb, M)]

These are formidable requirements, as evidenced by the fact that only a few algorithms (RSA,

elliptic curve cryptography, Diffie-Hellman, DSS) have received widespread acceptance in the

several decades since the concept of public-key cryptography was proposed.

Before elaborating on why the requirements are so formidable, let us first recast them. The

requirements boil down to the need for a trap-door one-way function. A one-way function is

one that maps a domain into a range such that every function value has a unique inverse, with

the condition that the calculation of the function is easy whereas the calculation of the inverse

is infeasible:

Y = f(X) easy

X = f1(X) infeasible

Generally, easy is defined to mean a problem that can be solved in polynomial time as a

function of input length. Thus, if the length of the input is n bits, then the time to compute the

function is proportional to na where a is a fixed constant. Such algorithms are said to belong

to the class P. The term infeasible is a much fuzzier concept. In general, we can say a problem

is infeasible if the effort to solve it grows faster than polynomial time as a function

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 9

of input size. For example, if the length of the input is n bits and the time to compute the

function is proportional to 2n, the problem is considered infeasible. Unfortunately, it is difficult

to determine if a particular algorithm exhibits this complexity.

Furthermore, traditional notions of computational complexity focus on the worst-case

or average-case complexity of an algorithm. These measures are inadequate for cryptography,

which requires that it be infeasible to invert a function for virtually all inputs, not for the worst

case or even average case.

We now turn to the definition of a trap-door one-way function, which is easy to calculate in

one direction and infeasible to calculate in the other direction unless certain additional

information is known. With the additional information the inverse can be calculated in

polynomial time. We can summarize as follows: A trap-door one-way function is a family of

invertible functions fk, such that

Thus, the development of a practical public-key scheme depends on discovery of a suitable

trap-door one-way function.

2.1.4 Public-Key Cryptanalysis

As with symmetric encryption, a public-key encryption scheme is vulnerable to a brute-

force attack. The countermeasure is the same: Use large keys. However, there is a tradeoff to

be considered. Public-key systems depend on the use of some sort of invertible mathematical

function. The complexity of calculating these functions may not scale linearly with the number

of bits in the key but grow more rapidly than that. Thus, the key size must be large enough to

make brute-force attack impractical but small enough for practical encryption and decryption.

In practice, the key sizes that have been proposed do make brute-force attack impractical but

result in encryption/decryption speeds that are too slow for general-purpose use. Instead, as

was mentioned earlier, public-key encryption is currently confined to key management and

signature applications.

Another form of attack is to find some way to compute the private key given the public

key. To date, it has not been mathematically proven that this form of attack is infeasible for a

particular public-key algorithm. Thus, any given algorithm, including the widely used RSA

algorithm, is suspect. The history of cryptanalysis shows that a problem that seems insoluble

from one perspective can be found to have a solution if looked at in an entirely different way.

Finally, there is a form of attack that is peculiar to public-key systems. This is, in

essence, a probable message attack. Suppose, for example, that a message were to be sent that

consisted solely of a 56-bit DES key. An adversary could encrypt all possible 56-bit DES

keys using the public key and could discover the encrypted key by matching the transmitted

ciphertext. Thus, no matter how large the key size of the public-key scheme, the attack is

reduced to a brute-force attack on a 56-bit key. This attack can be thwarted by appending some

random bits to such simple messages.

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 10

2.2 The RSA Algorithm
The pioneering paper by Diffie and Hellman introduced a new approach to

cryptography and, in effect, challenged cryptologists to come up with a cryptographic

algorithm that met the requirements for public-key systems. One of the first of the responses

to the challenge was developed in 1977 by Ron Rivest, Adi Shamir, and Len Adleman at MIT

and first published in 1978.

The Rivest-Shamir-Adleman (RSA) scheme has since that time reigned supreme as the

most widely accepted and implemented general-purpose approach to public-key encryption.

The RSA scheme is a block cipher in which the plaintext and ciphertext are integers between

0 and n-1 for some n. A typical size for n is 1024 bits, or 309 decimal digits. That is, n is less

than 21024. We examine RSA in this section in some detail, beginning with an explanation of

the algorithm. Then we examine some of the computational and cryptanalytical implications

of RSA.

2.2.1 Description of the Algorithm

The scheme developed by Rivest, Shamir, and Adleman makes use of an expression

with exponentials. Plaintext is encrypted in blocks, with each block having a binary value less

than some number n. That is, the block size must be less than or equal to log2(n); in practice,

the block size is i bits, where 2^i < n<=2^i+1. Encryption and decryption are of the following

form, for some plaintext block M and ciphertext block C:

C = M^e mod n

M = C^d mod n = (M^e)^d mod n = M^(ed) mod n

Both sender and receiver must know the value of n. The sender knows the value of e, and only

the receiver knows the value of d. Thus, this is a public-key encryption algorithm with a public

key of PU = {e, n} and a private key of PU = {d, n}. For this algorithm to be satisfactory for

public-key encryption, the following requirements must be met:

1. It is possible to find values of e, d, n such that M^(ed) mod n = M for all M < n.

2. It is relatively easy to calculate mod M^e mod n and Cd for all values of M < n.

3. It is infeasible to determine d given e and n.

For now, we focus on the first requirement and consider the other questions later. We

need to find a relationship of the form M^(ed) mod n = M

The preceding relationship holds if e and d are multiplicative inverses modulo f(n),

where f(n) is the Euler totient function. It is shown that for p, q prime, f(pq) = (p 1)(q 1) The

relationship between e and d can be expressed as

This is equivalent to saying

ed =1 mod f(n)

d =e^-1 mod f(n)

That is, e and d are multiplicative inverses mod f(n). Note that, according to the rules of

modular arithmetic, this is true only if d (and therefore e) is relatively prime to f(n).

Equivalently, gcd(f(n),d) = 1.

We are now ready to state the RSA scheme. The ingredients are the following:

p,q, two prime numbers (private, chosen)

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 11

n = pq (public, calculated)

e, with gcd(f(n),e) = 1;1 < e < f(n) (public, chosen)

d= e^-1(mod f(n)) (private, calculated)

The private key consists of {d, n} and the public key consists of {e, n}. Suppose that user A

has published its public key and that user B wishes to send the message M to A. Then B

calculates C = M^e mod n and transmits C. On receipt of this ciphertext, user A decrypts by

calculating M = C^d mod n.

Figure 2.5: The RSA Algorithm

Figure 2.5 summarizes the RSA algorithm. An example is shown in Figure 2.6. For this

example, the keys were generated as follows:

1. Select two prime numbers, p = 17 and q = 11.

2. Calculate n = pq = 17 x 11 = 187.

3. Calculate f(n) = (p 1)(q 1) = 16 x 10 = 160.

4. Select e such that e is relatively prime to f(n) = 160 and less than f(n) we choose e =

7.

5. Determine d such that de= 1 (mod 160) and d < 160. The correct value is d = 23, because

23 x 7 = 161 = 10 x 160 + 1; d can be calculated using the extended Euclid's algorithm.

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 12

Figure 2.6: Example of RSA Algorithm

The resulting keys are public key PU = {7,187} and private key PR = {23,187}. The example

shows the use of these keys for a plaintext input of M = 88. For encryption, we need to calculate

C = 88^7 mod 187. Exploiting the properties of modular arithmetic, we can do this as follows:

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 13

Figure 2.7: RSA Processing of Multiple Blocks

2.2.2 Computational Aspects

We now turn to the issue of the complexity of the computation required to use RSA.

There are actually two issues to consider: encryption/decryption and key generation. Let us

look first at the process of encryption and decryption and then consider key generation.

2.2.3 Exponentiation in Modular Arithmetic

Both encryption and decryption in RSA involve raising an integer to an integer power,

mod n. If the exponentiation is done over the integers and then reduced modulo n, the

intermediate values would be gargantuan. Fortunately, as the preceding example shows, we

can make use of a property of modular arithmetic:

[(a mod n) x (b mod n)] mod n = (a x b) mod n

Thus, we can reduce intermediate results modulo n. This makes the calculation practical.

Another consideration is the efficiency of exponentiation, because with RSA we are dealing

with

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 14

More generally, suppose we wish to find the value ab with a and b positive integers. If we

express b as a binary number bk bk1 ... b0 then we have

Therefore,

We can therefore develop the algorithm for computing ab mod n, shown in Figure 2.8. Table

2.3 shows an example of the execution of this algorithm. Note that the variable c is not needed;

it is included for explanatory purposes. The final value of c is the value of the exponent.

Note: The integer b is expressed as a binary number bkbk1 ... b0

Figure 2.8: Algorithm for Computing a^b mod n

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 15

Table 2.3: Result of the Fast Modular Exponentiation Algorithm for ab mod n, where

a = 7, b = 560 = 1000110000, n = 561

2.2.4 Efficient Operation Using the Public Key

To speed up the operation of the RSA algorithm using the public key, a specific

choice of e is usually made. The most common choice is 65537 (216 1); two other popular

choices are 3 and 17. Each of these choices has only two 1 bits and so the number of

multiplications required to perform exponentiation is minimized.

However, with a very small public key, such as e = 3, RSA becomes vulnerable to a

simple attack. Suppose we have three different RSA users who all use the value e = 3 but have

unique values of n, namely n1, n2, n3. If user A sends the same encrypted message M to all

three users, then the three ciphertexts are C1 = M3 mod n1; C2 = M3 mod n2; C3 = M3 mod

n3. It is likely that n1, n2, and n3 are pairwise relatively prime. Therefore, one can use the

Chinese remainder theorem (CRT) to compute M3 mod (n1n2n3). By the rules of the RSA

algorithm, M is less than each of the ni therefore M3 < n1n2n3.

Accordingly, the attacker need only compute the cube root of M3. This attack can be

countered by adding a unique pseudorandom bit string as padding to each instance of M to be

encrypted.

The reader may have noted that the definition of the RSA algorithm requires that during

key generation the user selects a value of e that is relatively prime to f(n). Thus, for example,

if a user has preselected e = 65537 and then generated primes p and q, it may turn out that

gcd(f(n),e) is not equal to 1, Thus, the user must reject any value of p or q that is not congruent

to 1 (mod 65537).

2.2.5 Efficient Operation Using the Private Key

We cannot similarly choose a small constant value of d for efficient operation. A small

value of d is vulnerable to a brute-force attack and to other forms of cryptanalysis. However,

there is a way to speed up computation using the CRT. We wish to compute the value M = C^d

mod n. Let us define the following intermediate results:

Vp = C^d mod p Vq = C^d mod q

Following the CRT, define the quantities:

Xp = q x (q1 mod p) Xq = p x (p1 mod q)

The CRT then shows, that

M = (VpXp + VqXq) mod n

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 16

Further, we can simplify the calculation of Vp and Vq using Fermat's theorem, which states that

a^p1=1(mod p) if p and a are relatively prime. Some thought should convince you that the

following are valid:

The quantities d mod (P1) and d mod (q1) can be precalculated. The end result is that the

calculation is approximately four times as fast as evaluating M = Cd mod n directly.

2.2.6 Key Generation

Before the application of the public-key cryptosystem, each participant must generate a pair

of keys.

This involves the following tasks:

● Determining two prime numbers, p and q

● Selecting either e or d and calculating the other

First, consider the selection of p and q. Because the value of n = pq will be known to

any potential adversary, to prevent the discovery of p and q by exhaustive methods, these

primes must be chosen from a sufficiently large set (i.e., p and q must be large numbers). On

the other hand, the method used for finding large primes must be reasonably efficient.

At present, there are no useful techniques that yield arbitrarily large primes, so some

other means of tackling the problem is needed. The procedure that is generally used is to pick

at random an odd number of the desired order of magnitude and test whether that number is

prime. If not, pick successive random numbers until one is found that tests prime.

A variety of tests for primality have been developed for a description of a number of

such tests). Almost invariably, the tests are probabilistic. That is, the test will merely determine

that a given integer is probably prime. Despite this lack of certainty, these tests can be run in

such a way as to make the probability as close to 1.0 as desired. As an example, one of the more

efficient and popular algorithms, the Miller-Rabin algorithm. With this algorithm and most

such algorithms, the procedure for testing whether a given integer n is prime is to perform some

calculation that involves n and a randomly chosen integer a. If n "fails" the test, then n is not

prime. If n "passes" the test, then n may be prime or nonprime. If n passes many such tests with

many different randomly chosen values for a, then we can have high confidence that n is, in

fact, prime.

In summary, the procedure for picking a prime number is as follows.

1. Pick an odd integer n at random (e.g., using a pseudorandom number generator).

2. Pick an integer a < n at random.

3. Perform the probabilistic primality test, such as Miller-Rabin, with a as a parameter. If n

fails the test, reject the value n and go to step 1.

4. If n has passed a sufficient number of tests, accept n; otherwise, go to step 2.

This is a somewhat tedious procedure. However, remember that this process is

performed relatively infrequently: only when a new pair (PU, PR) is needed.

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 17

2.2.7 The Security of RSA

Four possible approaches to attacking the RSA algorithm are as follows:

● Brute force: This involves trying all possible private keys.

● Mathematical attacks: There are several approaches, all equivalent in effort to factoring

the product of two primes.

● Timing attacks: These depend on the running time of the decryption algorithm.

● Chosen ciphertext attacks: This type of attack exploits properties of the RSA algorithm.

The defense against the brute-force approach is the same for RSA as for other

cryptosystems, namely, use a large key space. Thus, the larger the number of bits in d, the

better. However, because the calculations involved, both in key generation and in

encryption/decryption, are complex, the larger the size of the key, the slower the system will

run.

2.2.7.1 The Factoring Problem

Table 2.4: Progress in Factorization

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 18

Figure 2.9: MIPS-years Needed to Factor

In addition to specifying the size of n, a number of other constraints have been suggested by

researchers. To avoid values of n that may be factored more easily, the algorithm's inventors

suggest the following constraints on p and q:

1. p and q should differ in length by only a few digits. Thus, for a 1024-bit key (309 decimal

digits), both p and q should be on the order of magnitude of 1075 to 10100.

2. Both (p 1) and (q 1) should contain a large prime factor.

3. gcd(p 1, q 1) should be small.

In addition, it has been demonstrated that if e < n and d < n¼, then d can be easily

determined.

2.2.7.2 Timing Attacks

A timing attack is somewhat analogous to a burglar guessing the combination of a safe

by observing how long it takes for someone to turn the dial from number to number. We can

explain the attack using the modular exponentiation algorithm of Figure 2.8, but the attack can

be adapted to work with any implementation that does not run in fixed time. In this algorithm,

modular exponentiation is accomplished bit by bit, with one modular

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 19

multiplication performed at each iteration and an additional modular multiplication performed

for each 1 bit.

As Kocher points out in his paper, the attack is simplest to understand in an extreme

case. Suppose the target system uses a modular multiplication function that is very fast in

almost all cases but in a few cases takes much more time than an entire average modular

exponentiation. The attack proceeds bit-by bit starting with the leftmost bit, bk. Suppose that

the first j bits are known (to obtain the entire exponent, start with j = 0 and repeat the attack

until the entire exponent is known). For a given ciphertext, the attacker can complete the first

j iterations of the for loop. The operation of the subsequent step depends on the unknown

exponent bit. If the bit is set, d<- (d x a) mod n will be executed. For a few values of a and d,

the modular multiplication will be extremely slow, and the attacker knows which these are.

Therefore, if the observed time to execute the decryption algorithm is always slow when this

particular iteration is slow with a 1 bit, then this bit is assumed to be 1. If a number of observed

execution times for the entire algorithm are fast, then this bit is assumed to be 0.

In practice, modular exponentiation implementations do not have such extreme timing

variations, in which the execution time of a single iteration can exceed the mean execution time

of the entire algorithm. Nevertheless, there is enough variation to make this attack practical.

Although the timing attack is a serious threat, there are simple countermeasures that

can be used, including the following:

● Constant exponentiation time: Ensure that all exponentiations take the same amount of

time before returning a result. This is a simple fix but does degrade performance.

● Random delay: Better performance could be achieved by adding a random delay to the

exponentiation algorithm to confuse the timing attack. Kocher points out that if defenders don't

add enough noise, attackers could still succeed by collecting additional measurements to

compensate for the random delays.

● Blinding: Multiply the ciphertext by a random number before performing exponentiation.

This process prevents the attacker from knowing what ciphertext bits are being processed inside

the computer and therefore prevents the bit-by-bit analysis essential to the timing attack.

RSA Data Security incorporates a blinding feature into some of its products. The private-key

operation M = Cd mod n is implemented as follows:

1. Generate a secret random number r between 0 and n-1.

2. Compute C' = C(re) mod n, where e is the public exponent.

3. Compute M' = (C')d mod n with the ordinary RSA implementation.

4. Compute M = M'r^-1 mod n. In this equation, r1 is the multiplicative inverse of r mod n;

It can be demonstrated that this is the correct result by observing that red mod n =r mod n.

RSA Data Security reports a 2 to 10% performance penalty for blinding.

2.2.7.3 Chosen Ciphertext Attack and Optimal Asymmetric Encryption Padding

The basic RSA algorithm is vulnerable to a chosen ciphertext attack (CCA). CCA is

defined as an attack in which adversary chooses a number of ciphertexts and is then given the

corresponding plaintexts, decrypted with the target's private key. Thus, the adversary could

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 20

select a plaintext, encrypt it with the target's public key and then be able to get the plaintext

back by having it decrypted with the private key. Clearly, this provides the adversary with no

new information. Instead, the adversary exploits properties of RSA and selects blocks of data

that, when processed using the target's private key, yield information needed for cryptanalysis.

A simple example of a CCA against RSA takes advantage of the following property of RSA:

We can decrypt C = Me using a CCA as follows.

Therefore, Y = (2M) mod n From this, we can deduce M. To overcome this simple attack,

practical RSA based cryptosystems randomly pad the plaintext prior to encryption. This

randomizes the ciphertext so that Equation no longer holds. However, more sophisticated

CCAs are possible and a simple padding with a random value has been shown to be insufficient

to provide the desired security. To counter such attacks RSA Security Inc., a leading RSA

vendor and former holder of the RSA patent, recommends modifying the plaintext using a

procedure known as optimal asymmetric encryption padding (OAEP). A full discussion of the

threats and OAEP are beyond our scope;

Here, we simply summarize the OAEP procedure. Figure 2.10 depicts OAEP encryption. As

a first step the message M to be encrypted is padded. A set of optional parameters P is passed

through a hash function H. The output is then padded with zeros to get the desired length in the

overall data block (DB). Next, a random seed is generated and passed through another hash

function, called the mask generating function (MGF). The resulting hash value is bit-by- bit

XORed with DB to produce a maskedDB. The maskedDB is in turn passed through the MGF

to form a hash that is XORed with the seed to produce the masked seed. The concatenation of

the maskedseed and the maskedDB forms the encoded message EM. Note that the EM includes

the padded message, masked by the seed, and the seed, masked by the maskedDB. The EM is

then encrypted using RSA.

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 21

Figure 2.10: Encryption Using Optimal Assymetric Encryption Padding (OAEP)

2.3 Diffie-Hellman Key Exchange

The first published public-key algorithm appeared in the seminal paper by Diffie and

Hellman that defined public-key cryptography and is generally referred to as Diffie-Hellman

key exchange. A number of commercial products employ this key exchange technique.

The purpose of the algorithm is to enable two users to securely exchange a key that can then

be used for subsequent encryption of messages. The algorithm itself is limited to the exchange

of secret values.

The Diffie-Hellman algorithm depends for its effectiveness on the difficulty of computing

discrete logarithms. Briefly, we can define the discrete logarithm in the following way. First,

we define a primitive root of a prime number p as one whose powers modulo p generate all

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 22

the integers from 1 to p-1. That is, if a is a primitive root of the prime number p, then the

numbers

The exponent i is referred to as the discrete logarithm of b for the base a, mod p. We express

this value as dloga,p (b).

2.3.1 The Algorithm

Figure 2.11: The Diffie-Hellman Key Exchange

Figure 2.11 summarizes the Diffie-Hellman key exchange algorithm. For this scheme, there

are two publicly known numbers: a prime number q and an integer that is a primitive root of

q. Suppose the

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 23

Figure 2.12: The Diffie-Hellman Key Exchange Algorithm

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 24

2.3.2 Key Exchange Protocols

Figure 2.13 shows a simple protocol that makes use of the Diffie-Hellman calculation. Suppose

that user A wishes to set up a connection with user B and use a secret key to encrypt messages

on that connection. User A can generate a one-time private key XA, calculate YA, and send that

to user B. User B responds by generating a private value XB calculating YB, and sending YB to

user A. Both users can now calculate the key. The necessary public values q and  would need

to be known ahead of time. Alternatively, user A could pick values for q and  and include

those in the first message.

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 25

Figure 2.13: Diffie-Hellman Key Exchange

As an example of another use of the Diffie-Hellman algorithm, suppose that a group of users

(e.g., all users on a LAN) each generate a long-lasting private value Xi (for user i) and calculate

a public value Yi. These public values, together with global public values for q and a, are

stored in some central directory. At any time, user j can access user i's public value, calculate

a secret key, and use that to send an encrypted message to user A. If the central directory is

trusted, then this form of communication provides both confidentiality and a degree of

authentication. Because only i and j can determine the key, no other user can read the message

(confidentiality). Recipient i knows that only user j could have created a message using this

key (authentication). However, the technique does not protect against replay attacks.

2.3.3 Man-in-the-Middle Attack

The protocol depicted in Figure 2.11 is insecure against a man-in-the-middle attack.

Suppose Alice and Bob wish to exchange keys, and Darth is the adversary. The attack proceeds

as follows:

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 26

At this point, Bob and Alice think that they share a secret key, but instead Bob and Darth

share secret

key K1 and Alice and Darth share secret key K2. All future communication between Bob and

Alice is

compromised in the following way:

1. Alice sends an encrypted message M: E(K2, M).

2. Darth intercepts the encrypted message and decrypts it, to recover M.

3. Darth sends Bob E(K1, M) or E(K1, M'), where M' is any message. In the first case,

Darth simply wants to eavesdrop on the communication without altering it. In the

second case, Darth wants to modify the message going to Bob.

The key exchange protocol is vulnerable to such an attack because it does not authenticate the

participants. This vulnerability can be overcome with the use of digital signatures and public-

key certificates.

Figure 2.14: Man-in-the-Middle Attack

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 27

2.4 ElGamal Cryptographic System

In 1984, T Elgamal announced a public-key scheme based on discrete logarithms,

closely related to the Diffie-Hellman technique. The Elgamal cryptosystem is used in some

form in a number of standards including the digital signature standard(DSS) and the S/MIME

email standard.

This steps are summarized in figure 2.15. It corresponds to figure 2.1a. Alice generates a

public/private keys pair; Bob encrypts using Alice’s public key; and Alice decrypts using her

private key.

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 28

Figure 2.15: The Elgamal Cryptosystem

Cryptography Module-2

Prepared by Divyashree H S Dept. Of CSE, BrCE 29

Cryptography Module-3

 Prepared by Divyashree H S Dept. Of CSE, BrCE 1

Module-3:

Elliptic Curve Cryptography, Key

Management and Distribution

3.1 Elliptic Curve Arithmetic
Most of the products and standards that use public-key cryptography for encryption and digital

signatures use RSA. As we have seen, the key length for secure RSA use has increased over

recent years, and this has put a heavier processing load on applications using RSA. This burden

has ramifications, especially for electronic commerce sites that conduct large numbers of secure

transactions. Recently, a competing system has begun to challenge RSA: elliptic curve

cryptography (ECC). Already, ECC is showing up in standardization efforts, including the

IEEE P1363 Standard for Public-Key Cryptography.

The principal attraction of ECC, compared to RSA, is that it appears to offer equal

security for a far smaller key size, thereby reducing processing overhead. On the other hand,

although the theory of ECC has been around for some time, it is only recently that products

have begun to appear and that there has been sustained cryptanalytic interest in probing for

weaknesses. Accordingly, the confidence level in ECC is not yet as high as that in RSA. ECC

is fundamentally more difficult to explain than either RSA or Diffie-Hellman, and a full

mathematical description.

3.1.1 Abelian Groups
An abelian group G, sometimes denoted by {G, • }, is a set of elements with a binary operation,

denoted by •, that associates to each ordered pair (a, b) of elements in G an element (a

• b) in G, such that the following axioms are obeyed.

A number of public-key ciphers are based on the use of an abelian group. For example,

Diffie-Hellman key exchange involves multiplying pairs of nonzero integers modulo a prime

number q. Keys are generated by exponentiation over the group, with exponentiation defined

as repeated multiplication:

For example, ak mod q = mod q. To attack Diffie-Hellman, the attacker must determine k

given a and ak; this is the discrete log problem.

For elliptic curve cryptography, an operation over elliptic curves, called addition, is used

Multiplication is defined by repeated addition. For example,

where the addition is performed over an elliptic curve. Cryptanalysis involves determining k

given a and (a x k).

Cryptography Module-3

 Prepared by Divyashree H S Dept. Of CSE, BrCE 2

An elliptic curve is defined by an equation in two variables, with coefficients. For

cryptography, the variables and coefficients are restricted to elements in a finite field, which

results in the definition of a finite abelian group. Before looking at this, we first look at elliptic

curves in which the variables and coefficients are real numbers.

3.1.2 Elliptic Curves over Real Numbers
Elliptic curves are not ellipses. They are so named because they are described by cubic

equations, similar to those used for calculating the circumference of an ellipse. In general, cubic

equations for elliptic curves take the form

y2 + axy + by = x3 + cx2 + dx + e

where a, b, c, d, and e are real numbers and x and y take on values in the real numbers. For

our purpose, it is sufficient to limit ourselves to equations of the form.

Such equations are said to be cubic, or of degree 3, because the highest exponent they contain

is a 3. Also included in the definition of an elliptic curve is a single element denoted O and

called the point at infinity or the zero point. To plot such a curve, we need to compute

For given values of a and b, the plot consists of positive and negative values of y for each value

of x. Thus each curve is symmetric about y = 0.

Figure 3.1 shows two examples of elliptic curves. As you can see, the formula

sometimes produces weird-looking curves.

Figure 3.1: Example of Elliptic Curve

Cryptography Module-3

 Prepared by Divyashree H S Dept. Of CSE, BrCE 3

Now, consider the set of points E(a, b) consisting of all of the points (x, y) that satisfy

together with the element O. Using a different value of the pair (a, b) results in a different set

E(a, b). Using this terminology, the two curves in Figure 3.1 depict the sets E(1,0) and E(1,

1), respectively.

3.1.3 Geometric Description of Addition

It can be shown that a group can be defined based on the set E(a, b) for specific values of a

and b in , provided the following condition is met:

To define the group, we must define an operation, called addition and denoted by +, for

the set E(a, b), where a and b satisfy above equation. In geometric terms, the rules for addition

can be stated as follows: If three points on an elliptic curve lie on a straight line, their sum

is O. From this definition, we can define the rules of addition over an elliptic curve:

1. O serves as the additive identity. Thus O = O; for any point P on the elliptic curve, P

+ O = P. In what follows, we assume P O and Q O.

2. The negative of a point P is the point with the same x coordinate but the negative of the

y coordinate; that is, if P = (x, y), then P = (x, y). Note that these two points can be

joined by a vertical line. Note that P + (P) = P P = O.

3. To add two points P and Q with different x coordinates, draw a straight line between

them and find the third point of intersection R. It is easily seen that there is a unique

point R that is the point of intersection (unless the line is tangent to the curve at either

P or Q, in which case we take R = P or R = Q, respectively). To form a group structure,

we need to define addition on these three points as follows: P + Q = R. That is, we

define P + Q to be the mirror image (with respect to the x axis) of the third point of

intersection. Figure 3.1 illustrates this construction.

4. The geometric interpretation of the preceding item also applies to two points, P and P,

with the same x coordinate. The points are joined by a vertical line, which can be viewed

as also intersecting the curve at the infinity point. We therefore have P + (P)

= O, consistent with item (2).

5. To double a point Q, draw the tangent line and find the other point of intersection S.

Then Q + Q = 2Q = S.

With the preceding list of rules, it can be shown that the set E(a, b) is an abelian group.

Algebraic Description of Addition
We present some results that enable calculation of additions over elliptic curves. For two

distinct points P = (xP, yP) and Q = (xQ, yQ) that are not negatives of each other, the slope of

the line l that joins them is D = (yQ yP). There is exactly one other point where l intersects the

elliptic curve, and that is the negative of the sum of P and Q. After some algebraic

manipulation, we can express the sum R = P + Q as follows:

We also need to be able to add a point to itself: P + P = 2P = R. When yP 0, the expressions

are

Cryptography Module-3

 Prepared by Divyashree H S Dept. Of CSE, BrCE 4

3.1.4 Elliptic Curves over Zp

Elliptic curve cryptography makes use of elliptic curves in which the variables and coefficients

are all restricted to elements of a finite field. Two families of elliptic curves are used in

cryptographic applications: prime curves over Zp and binary curves over GF(2m). For a prime

curve over Zp,

we use a cubic equation in which the variables and coefficients all take on values in the

set of integers from 0 through p 1 and in which calculations are performed modulo p. For a

binary curve defined over GF (2m), the variables and coefficients all take on values in GF(2n)

and in calculations are performed over GF(2n) points out that prime curves are best for software

applications, because the extended bit-fiddling operations needed by binary curves are not

required; and that binary curves are best for hardware applications, where it takes remarkably

few logic gates to create a powerful, fast cryptosystem.

There is no obvious geometric interpretation of elliptic curve arithmetic over finite

fields. The algebraic interpretation used for elliptic curve arithmetic over real numbers does

readily carry over, and this is the approach we take.

For elliptic curves over Zp, as with real numbers

The above equation is satisfied for a = 1, b = 1, x = 9, y = 9, y = 7, p = 23:

72 mod 23 = (93 + 9 + 1) mod 23

49 mod 23 = 739 mod 23

3 = 3

Now consider the set Ep (a, b) consisting of all pairs of integers (x, y) that satisfy above

equation, together with a point at infinity O. The coefficients a and b and the variables x and

y are all elements of Zp.

Table 3.1: Points on the Elliptic Curve E23 (1,1)

Cryptography Module-3

 Prepared by Divyashree H S Dept. Of CSE, BrCE 5

Figure 3.2: The Elliptic Curve E23(1,1)
It can be shown that a finite abelian group can be defined based on the set Ep(a, b) provided

that (x3 +ax + b) mod p has no repeated factors. This is equivalent to the condition

The rules for addition over Ep(a, b) correspond to the algebraic technique described for

elliptic curves

defined over real number. For all points P, Q belongs Ep(a, b);

1. P + O = P.

2. If P = (xP, yP) then P + (xP, yP) = O. The point (xP, yP) is the negative of P, denoted

as P. For example, in E23(1,1), for P = (13,7), we have P = (13, 7). But 7 mod 23 =

16. Therefore, P = (13, 16), which is also in E23(1,1).

3. If P = (xP, yQ) and Q = (xQ, yQ) with P Q, then R = P + Q = (xR, yR) is

determined by the following rules:

xR = (l2 xP xQ) mod p

yR = (l(xP xR) yP) mod p

where

4. Multiplication is defined as repeated addition; for example, 4P = P + P + P + P.

For example, let P = (3,10) and Q = (9,7) in E23(1,1). Then

Cryptography Module-3

 Prepared by Divyashree H S Dept. Of CSE, BrCE 6

xR = (112 3 9) mod 23 = 17

yR = (11(3 17) 10) mod 23 = 164 mod 23 = 20

So P + Q = (17, 20). To find 2P,

The last step in the preceding equation involves taking the multiplicative inverse of 4 in Z23.

This can be done using the extended Euclidean algorithm.

For determining the security of various elliptic curve ciphers, it is of some interest to know

the number the number of points in a finite abelian group defined over an elliptic curve. In

the case of the finite group Ep(a,b), the number of points N is bounded by

Note that the number of points in Ep(a, b) is approximately equal to the number of elements in

Zp, namely p elements.

3.1.5 Elliptic Curves over GF(2m)

A finite field GF(2m) consists of 2m elements, together with addition and multiplication

operations that can be defined over polynomials. For elliptic curves over GF(2m), we use a

cubic equation in which the variables and coefficients all take on values in GF(2m), for some

number m, and in which calculations are performed using the rules of arithmetic in GF(2m).

It turns out that the form of cubic equation appropriate for cryptographic applications for

elliptic curves is somewhat different for GF(2m) than for Zp. The form is

where it is understood that the variables x and y and the coefficients a and b are elements of

GF(2m) of and that calculations are performed in GF(2m).

Now consider the set E2 m(a, b) consisting of all pairs of integers (x, y) that satisfy the above

equation together with a point at infinity O.
For example, let us use the finite field GF(24) with the irreducible polynomial f(x) = x4 + x +

1. This yields a generator that satisfies f(g) = 0, with a value of g4 = g + 1, or in binary 0010.

We can develop the powers of g as follows:

For example, g5 = (g4)(g) = g2 + g = 0110.

Cryptography Module-3

 Prepared by Divyashree H S Dept. Of CSE, BrCE 7

Table 3.2 lists the points (other than O) that are part of E24(g4, 1). Figure 3.3 plots the points

of E24(g4, 1).

Table 3.2: Points (other than O) on the Elliptic curve

Figure 3.3: the Elliptic curve

Cryptography Module-3

 Prepared by Divyashree H S Dept. Of CSE, BrCE 8

3.2 Elliptic Curve Cryptography
The addition operation in ECC is the counterpart of modular multiplication in RSA, and

multiple addition is the counterpart of modular exponentiation. To form a cryptographic system

using elliptic curves, we need to find a "hard problem" corresponding to factoring the product

of two primes or taking the discrete logarithm.

Cryptography Module-3

 Prepared by Divyashree H S Dept. Of CSE, BrCE 9

Consider the equation Q = kP where Q, P is belongs to Ep(a, b) and k < p. It is relatively easy

to calculate Q given k and P, but it is relatively hard to determine k given Q and P. This is

called the discrete logarithm problem for elliptic curves.

Consider the group E23 (9, 17). This is the group defined by the equation y2 mod 23 = (x3 +

9x + 17) mod 23. What is the discrete logarithm k of Q = (4, 5) to the base P = (16.5)? The

brute-force method is to compute multiples of P until Q is found.

Thus P = (16, 5); 2P = (20, 20); 3P = (14, 14); 4P = (19, 20); 5P = (13, 10); 6P = (7, 3); 7P =

(8, 7); 8P = (12, 17); 9P = (4, 5).

Because 9P = (4, 5) = Q, the discrete logarithm Q = (4, 5) to the base P = (16, 5) is k = 9. In a

real application, k would be so large as to make the brute-force approach infeasible.

3.2.1 Analog of Diffie-Hellman Key Exchange

Key exchange using elliptic curves can be done in the following manner. First pick a large

integer q, which is either a prime number p or an integer of the form 2m and elliptic curve

parameters a and b for

 or

This defines the elliptic group of points Eq(a, b). Next, pick a base point G = (x1, y1) in

Ep(a, b) whose order is a very large value n. The order n of a point G on an elliptic curve is

the smallest positive integer n such that nG = O. Eq(a, b) and G are parameters of the

cryptosystem known to all participants.

A key exchange between users A and B can be accomplished as follows

1. A selects an integer nA less than n. This is A's private key. A then generates a public key

PA = nA x G; the public key is a point in Eq(a, b).

2. B similarly selects a private key nB and computes a public key PB.

3. A generates the secret key K = nA x PB. B generates the secret key K = nB x PA.

Figure 3.4. ECC Diffie-Hellman Key Exchange

The two calculations in step 3 produce the same result because nA x PB = nA x (nB x G) = nB

x (nA x G) = nB x PA

Cryptography Module-3

 Prepared by Divyashree H S Dept. Of CSE, BrCE 10

To break this scheme, an attacker would need to be able to compute k given G and kG, which

is assumed hard.

As an example,
[5]

take p = 211; Ep(0, 4), which is equivalent to the curve y2 = x3 4; and G = (2,
2).

One can calculate that 240G = O. A's private key is nA = 121, so A's public key is PA = 121(2,

2) = (115, 48). B's private key is nB = 203, so B's public key is 203(2, 2) = (130, 203).

The shared secret key is 121(130, 203) = 203(115, 48) = (161, 69).

Note that the secret key is a pair of numbers. If this key is to be used as a session key for

conventional encryption, then a single number must be generated. We could simply use the x

coordinates or some simple function of the x coordinate.

3.2.2 Elliptic Curve Encryption/Decryption

Several approaches to encryption/decryption using elliptic curves have been analyzed in the

literature. The first task in this system is to encode the plaintext message m to be sent as an x-

y point Pm. It is the point Pm that will be encrypted as a ciphertext and subsequently decrypted.

Note that we cannot simply encode the message as the x or y coordinate of a point, because not

all such coordinates are in Eq(a, b);

Again, there are several approaches to this encoding, which we will not address here,

but suffice it to say that there are relatively straightforward techniques that can be used.

As with the key exchange system, an encryption/decryption system requires a point G and an

elliptic group Eq(a, b) as parameters. Each user A selects a private key nA and generates a

public key PA = nA x G.

To encrypt and send a message Pm to B, A chooses a random positive integer k and

produces the ciphertext Cm consisting of the pair of points:

Cm = {kG, Pm + kPB}

Note that A has used B's public key PB. To decrypt the ciphertext, B multiplies the first point

in the pair by B's secret key and subtracts the result from the second point:

Pm + kPB nB(kG) = Pm + k(nBG) nB(kG) = Pm

A has masked the message Pm by adding kPB to it. Nobody but A knows the value of

k, so even though PB is a public key, nobody can remove the mask kPB. However, A also

includes a "clue," which is enough to remove the mask if one knows the private key nB. For an

attacker to recover the message, the attacker would have to compute k given G and kG, which

is assumed hard.

As an example of the encryption process (taken from [KOBL94]), take p = 751; Ep(1,

188), which is equivalent to the curve y2 = x3 x + 188; and G = (0, 376). Suppose that A wishes

to send a message to B that is encoded in the elliptic point Pm = (562, 201) and that A selects

the random number k = 386. B's public key is PB = (201, 5). We have 386(0, 376) = (676, 558),

and (562, 201) + 386(201, 5) = (385, 328). Thus A sends the cipher text

{(676, 558), (385, 328)}.

3.2.3 Security of Elliptic Curve Cryptography

The security of ECC depends on how difficult it is to determine k given kP and P. This is

referred to as the elliptic curve logarithm problem. The fastest known technique for taking the

elliptic curve logarithm is known as the Pollard rho method. Table 3.3 compares various

algorithms by showing comparable key sizes in terms of computational effort for cryptanalysis.

As can be seen, a considerably smaller key size can be used for ECC compared to RSA.

Cryptography Module-3

 Prepared by Divyashree H S Dept. Of CSE, BrCE 11

Furthermore, for equal key lengths, the computational effort required for ECC and RSA

is comparable. Thus, there is a computational advantage to using ECC with a shorter key length

than a comparably secure RSA.

Table 3.3. Comparable Key Sizes in Terms of Computational Effort for Cryptanalysis

3.3 Pseudorandom Number Generation (PRNG) based on Asymmetric

Ciphers
➢ asymmetric encryption algorithm produce apparently random output

➢ hence can be used to build a pseudorandom number generator (PRNG)

➢ much slower than symmetric algorithms

➢ hence only use to generate a short pseudorandom bit sequence (eg. key)

3.3.1 PRNG based on RSA

Figure 3.5: Micali-Schnorr Pseudorandom Bit Generator

Cryptography Module-3

 Prepared by Divyashree H S Dept. Of CSE, BrCE 12

3.3.2 PRNG based on ECC

• dual elliptic curve PRNG

– NIST SP 800-9, ANSI X9.82 and ISO 18031

• some controversy on security /inefficiency

• algorithm

for i = 1 to k do

set si = x(si-1 P)
set ri = lsb240 (x(si Q))

end for
return r1 , . . . , rk

• only use if just have ECC

Cryptography Module-3

 Prepared by Divyashree H S Dept. Of CSE, BrCE 13

3.4 Symmetric key distribution using symmetric encryption

➢ symmetric schemes require both parties to share a common secret key

➢ issue is how to securely distribute this key

➢ whilst protecting it from others

➢ frequent key changes can be desirable

➢ often secure system failure due to a break in the key distribution scheme

Given parties A and B have various key distribution alternatives:

1. A can select key and physically deliver to B

2. third party can select & deliver key to A & B

3. if A & B have communicated previously can use previous key to encrypt a new key

4. if A & B have secure communications with a third party C, C can relay key between

A & B

Figure 3.6: Number of keys required to support arbitrary connections between

endpoints

Key Hierarchy

➢ typically have a hierarchy of keys

➢ session key

Cryptography Module-3

 Prepared by Divyashree H S Dept. Of CSE, BrCE 14

⚫ temporary key

⚫ used for encryption of data between users

⚫ for one logical session then discarded

➢ master key

⚫ used to encrypt session keys

⚫ shared by user & key distribution center

Figure 3.7: The use of a key hierarchy

3.4.1 Key Distribution Scenario

Figure 3.8: Key Distribution Scenario

Cryptography Module-3

 Prepared by Divyashree H S Dept. Of CSE, BrCE 15

3.4.2 A Transparent Key Control Scheme

Figure 3.9: Automatic key distribution for connection-oriented protocol

3.4.3 Decentralized Key Control

Figure 3.10: Decentralized key distribution

Cryptography Module-3

 Prepared by Divyashree H S Dept. Of CSE, BrCE 16

3.4.4 Controlling key usage

Figure 3.11: Control Vector Encryption and Decryption

Key Distribution Issues

➢ hierarchies of KDC’s required for large networks, but must trust each other

➢ session key lifetimes should be limited for greater security

➢ use of automatic key distribution on behalf of users, but must trust system

➢ use of decentralized key distribution

➢ controlling key usage

3.5 Symmetric Key Distribution using asymmetric encryption

➢ public key cryptosystems are inefficient

⚫ so almost never use for direct data encryption

⚫ rather use to encrypt secret keys for distribution

3.5.1 Simple Secret Key Distribution

➢ Merkle proposed this very simple scheme

⚫ allows secure communications

⚫ no keys before/after exist

Figure 3.12: Simple use of public key encryption to establish a session key

➢ this very simple scheme is vulnerable to an active man-in-the-middle attack

Cryptography Module-3

 Prepared by Divyashree H S Dept. Of CSE, BrCE 17

Figure 3.13: Another Man-in-the-Middle Attack

3.5.2 Secret Key Distribution with Confidentiality and Authentication

Figure 3.14: public key distribution of secret keys

3.5.3 Hybrid Key Distribution

➢ retain use of private-key KDC

➢ shares secret master key with each user

➢ distributes session key using master key

➢ public-key used to distribute master keys

⚫ especially useful with widely distributed users

➢ rationale

⚫ performance

⚫ backward compatibility

Cryptography Module-3

 Prepared by Divyashree H S Dept. Of CSE, BrCE 18

3.6 Distribution of Public Keys

➢ can be considered as using one of:

⚫ public announcement

⚫ publicly available directory

⚫ public-key authority

⚫ public-key certificates

3.6.1 Public Announcement

➢ users distribute public keys to recipients or broadcast to community at large

⚫ eg. append PGP keys to email messages or post to news groups or email list

➢ major weakness is forgery

⚫ anyone can create a key claiming to be someone else and broadcast it

⚫ until forgery is discovered can masquerade as claimed user

Figure 3.15: Uncontrolled public key distribution

Figure 3.16: public-key publication

3.6.2 Publicly Available Directory

➢ can obtain greater security by registering keys with a public directory

➢ directory must be trusted with properties:

⚫ contains {name,public-key} entries

⚫ participants register securely with directory

Cryptography Module-3

 Prepared by Divyashree H S Dept. Of CSE, BrCE 19

⚫ participants can replace key at any time

⚫ directory is periodically published

⚫ directory can be accessed electronically

➢ still vulnerable to tampering or forgery

3.6.3 Public-Key Authority

➢ improve security by tightening control over distribution of keys from directory

➢ has properties of directory

➢ and requires users to know public key for the directory

➢ then users interact with directory to obtain any desired public key securely

⚫ does require real-time access to directory when keys are needed

⚫ may be vulnerable to tampering

Figure 3.17: public key distribution scenario

3.6.4 Public-Key Certificates

➢ certificates allow key exchange without real-time access to public-key authority

➢ a certificate binds identity to public key

⚫ usually with other info such as period of validity, rights of use etc

➢ with all contents signed by a trusted Public-Key or Certificate Authority (CA)

➢ can be verified by anyone who knows the public-key authorities public-key

Requirements:

1. Any participant can read a certificate to determine the name and public key of the

certificate‘s owner.

2. Any participant can verify that the certificate originated from the certificate authority

and is not counterfeit.

3. Only the certificate authority can create and update certificates.

4. Any participant can verify the time validity of the certificate.

Cryptography Module-3

 Prepared by Divyashree H S Dept. Of CSE, BrCE 20

Figure 3.18: Exchange of public-key certificates

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 1

Module-4:

4.1 X.509 certificates

ITU-T recommendation X.509 is part of the X.500 series of recommendations that define a

directory service. The directory is, in effect, a server or distributed set of servers that maintains

a database of information about users. The information includes a mapping from user name to

network address, as well as other attributes and information about the users.

X.509 defines a framework for the provision of authentication services by the X.500

directory to its users.

X.509 is an important standard because the certificate structure and authentication

protocols defined in X.509 are used in a variety of contexts.

X.509 was initially issued in 1988. The standard was subsequently revised to address

some of the security concerns documented; a revised recommendation was issued in 1993. A

third version was issued in 1995 and revised in 2000.

X.509 is based on the use of public-key cryptography and digital signatures. The

standard does not dictate the use of a specific algorithm but recommends RSA. The digital

signature scheme is assumed to require the use of a hash function. Again, the standard does not

dictate a specific hash algorithm. The 1988 recommendation included the description of a

recommended hash algorithm; this algorithm has since been shown to be insecure and was

dropped from the 1993 recommendation. Figure 4.1 illustrates the generation of a public-key

certificate.

Figure 4.1: X.509 public key certification use

4.1.1 Certificates

The heart of the X.509 scheme is the public-key certificate associated with each user. These

user certificates are assumed to be created by some trusted certification authority (CA) and

placed in the directory by the CA or by the user. The directory server itself is not responsible

for the creation of public keys or for the certification function; it merely provides an easily

accessible location for users to obtain certificates.

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 2

Figure 14.2a shows the general format of a certificate, which includes the following elements:

● Version: Differentiates among successive versions of the certificate format; the default is

version 1. If the Issuer Unique Identifier or Subject Unique Identifier are present, the value

must be version 2. If one or more extensions are present, the version must be version 3.

● Serial number: An integer value, unique within the issuing CA, that is unambiguously

associated with this certificate.

● Signature algorithm identifier: The algorithm used to sign the certificate, together with

any associated parameters. Because this information is repeated in the Signature field at the

end of the certificate, this field has little, if any, utility.

● Issuer name: X.500 name of the CA that created and signed this certificate.

● Period of validity: Consists of two dates: the first and last on which the certificate is valid.

● Subject name: The name of the user to whom this certificate refers. That is, this certificate

certifies the public key of the subject who holds the corresponding private key.

● Subject's public-key information: The public key of the subject, plus an identifier of the

algorithm for which this key is to be used, together with any associated parameters.

● Issuer unique identifier: An optional bit string field used to identify uniquely the issuing

CA in the event the X.500 name has been reused for different entities.

● Subject unique identifier: An optional bit string field used to identify uniquely the subject

in the event the X.500 name has been reused for different entities.

● Extensions: A set of one or more extension fields. Extensions were added in version 3

● Signature: Covers all of the other fields of the certificate; it contains the hash code of the

other fields, encrypted with the CA's private key. This field includes the signature algorithm

identifier.

Figure 4.2: X.509 Formats

The unique identifier fields were added in version 2 to handle the possible reuse of subject

and/or issuer names over time. These fields are rarely used.

The standard uses the following notation to define a certificate:

CA<<A>> = CA {V, SN, AI, CA, TA, A, Ap}

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 3

where

Y <<X>> = the certificate of user X issued by certification authority Y

Y {I} = the signing of I by Y. It consists of I with an encrypted hash code appended

The CA signs the certificate with its private key. If the corresponding public key is known to

a user, then that user can verify that a certificate signed by the CA is valid.

4.1.2 Obtaining a User's Certificate

User certificates generated by a CA have the following characteristics:

● Any user with access to the public key of the CA can verify the user public key that was
certified.

● No party other than the certification authority can modify the certificate without this being

detected.

Because certificates are unforgeable, they can be placed in a directory without the need for the

directory to make special efforts to protect them. If all users subscribe to the same CA, then

there is a common trust of that CA. All user certificates can be placed in the directory for

access by all users. In addition, a user can transmit his or her certificate directly to other users.

In either case, once B is in possession of A's certificate, B has confidence that messages it

encrypts with A's public key will be secure from eavesdropping and that messages signed with

A's private key are unforgeable.

If there is a large community of users, it may not be practical for all users to subscribe

to the same CA. Because it is the CA that signs certificates, each participating user must have

a copy of the CA's own public key to verify signatures. This public key must be provided to

each user in an absolutely secure (with respect to integrity and authenticity) way so that the

user has confidence in the associated certificates. Thus, with many users, it may be more

practical for there to be a number of CAs, each of which securely provides its public key to

some fraction of the users.

Now suppose that A has obtained a certificate from certification authority X1 and B has

obtained a certificate from CA X2. If A does not securely know the public key of X2, then B's

certificate, issued by X2, is useless to A. A can read B's certificate, but A cannot verify the

signature. However, if the two CAs have securely exchanged their own public keys, the

following procedure will enable A to obtain B's public key:

1. A obtains, from the directory, the certificate of X2 signed by X1. Because A securely

knows X1's public key, A can obtain X2's public key from its certificate and verify it

by means of X1's signature on the certificate.

2. A then goes back to the directory and obtains the certificate of B signed
by X2 Because A now has a trusted copy of X2's public key, A can verify the
signature and securely obtain B's public key.

A has used a chain of certificates to obtain B's public key. In the notation of X.509, this chain

is expressed as

X1<<X2>> X2 <>

In the same fashion, B can obtain A's public key with the reverse chain:

X2<<X1>> X1 <<A>>

This scheme need not be limited to a chain of two certificates. An arbitrarily long path of

CAs can be followed to produce a chain. A chain with N elements would be expressed as

X1<<X2>> X2 <<X3>>... XN<>

In this case, each pair of CAs in the chain (Xi, Xi+1) must have created certificates for each

other. All these certificates of CAs by CAs need to appear in the directory, and the user needs

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 4

to know how they are linked to follow a path to another user's public-key certificate. X.509

suggests that CAs be arranged in a hierarchy so that navigation is straightforward.

Figure 4.3, taken from X.509, is an example of such a hierarchy. The connected circles indicate

the hierarchical relationship among the CAs; the associated boxes indicate certificates

maintained in the directory for each CA entry. The directory entry for each CA includes two

types of certificates:

● Forward certificates: Certificates of X generated by other CAs

● Reverse certificates: Certificates generated by X that are the certificates of other CAs

Figure 4.3:X.509 Hierarchy: A hypothetical example

In this example, user A can acquire the following certificates from the directory to establish a

certification path to B:

X<<W>> W <<V>> V <<Y>> <<Z>> Z <>

When A has obtained these certificates, it can unwrap the certification path in sequence to

recover a trusted copy of B's public key. Using this public key, A can send encrypted messages

to B. If A wishes to receive encrypted messages back from B, or to sign messages sent to B,

then B will require A's public key, which can be obtained from the following certification path:
Z<<Y>> Y <<V>> V <<W>> W <<X>>X <<A>>

B can obtain this set of certificates from the directory, or A can provide them as part of its

initial message to B.

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 5

4.1.3 Revocation of Certificates

Recall from Figure 4.2 that each certificate includes a period of validity, much like a credit

card. Typically, a new certificate is issued just before the expiration of the old one. In addition,

it may be desirable on occasion to revoke a certificate before it expires, for one of the following

reasons:

1. The user's private key is assumed to be compromised.

2. The user is no longer certified by this CA.

3. The CA's certificate is assumed to be compromised.

Each CA must maintain a list consisting of all revoked but not expired certificates issued by

that CA, including both those issued to users and to other CAs. These lists should also be posted

on the directory.

Each certificate revocation list (CRL) posted to the directory is signed by the issuer and

includes (Figure 4.2b) the issuer's name, the date the list was created, the date the next CRL is

scheduled to be issued, and an entry for each revoked certificate. Each entry consists of the

serial number of a certificate and revocation date for that certificate. Because serial numbers

are unique within a CA, the serial number is sufficient to identify the certificate.

When a user receives a certificate in a message, the user must determine whether the

certificate has been revoked. The user could check the directory each time a certificate is

received. To avoid the delays (and possible costs) associated with directory searches, it is likely

that the user would maintain a local cache of certificates and lists of revoked certificates.

4.1.4 X.509 Version 3

The X.509 version 2 format does not convey all of the information that recent design and

implementation experience has shown to be needed. lists the following requirements not

satisfied by version 2:

1. The Subject field is inadequate to convey the identity of a key owner to a public-key

user. X.509 names may be relatively short and lacking in obvious identification details

that may be needed by the user.

2. The Subject field is also inadequate for many applications, which typically recognize

entities by an Internet e-mail address, a URL, or some other Internet-related

identification.

3. There is a need to indicate security policy information. This enables a security

application or function, such as IPSec, to relate an X.509 certificate to a given policy.

4. There is a need to limit the damage that can result from a faulty or malicious CA by

setting constraints on the applicability of a particular certificate.

5. It is important to be able to identify different keys used by the same owner at different

times. This feature supports key life cycle management, in particular the ability to

update key pairs for users and CAs on a regular basis or under exceptional

circumstances.

Rather than continue to add fields to a fixed format, standards developers felt that a more

flexible approach was needed. Thus, version 3 includes a number of optional extensions that

may be added to the version 2 format. Each extension consists of an extension identifier, a

criticality indicator, and an extension value. The criticality indicator indicates whether an

extension can be safely ignored. If the indicator has a value of TRUE and an implementation

does not recognize the extension, it must treat the certificate as invalid.

The certificate extensions fall into three main categories: key and policy information, subject

and issuer attributes, and certification path constraints.

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 6

4.1.5 Key and Policy Information

These extensions convey additional information about the subject and issuer keys, plus

indicators of certificate policy. A certificate policy is a named set of rules that indicates the

applicability of a certificate to a particular community and/or class of application with common

security requirements. For example, a policy might be applicable to the authentication of

electronic data interchange (EDI) transactions for the trading of goods within a given price

range.

This area includes the following:

● Authority key identifier: Identifies the public key to be used to verify the signature on this

certificate or CRL. Enables distinct keys of the same CA to be differentiated. One use of this

field is to handle CA key pair updating.

● Subject key identifier: Identifies the public key being certified. Useful for subject key pair

updating. Also, a subject may have multiple key pairs and, correspondingly, different

certificates for different purposes (e.g., digital signature and encryption key agreement).

● Key usage: Indicates a restriction imposed as to the purposes for which, and the policies

under which, the certified public key may be used. May indicate one or more of the following:

digital signature, nonrepudiation, key encryption, data encryption, key agreement, CA

signature verification on certificates, CA signature verification on CRLs.

● Private-key usage period: Indicates the period of use of the private key corresponding to

the public key. Typically, the private key is used over a different period from the validity of

the public key. For example, with digital signature keys, the usage period for the signing private

key is typically shorter than that for the verifying public key.

● Certificate policies: Certificates may be used in environments where multiple policies

apply. This extension lists policies that the certificate is recognized as supporting, together with

optional qualifier information.

● Policy mappings: Used only in certificates for CAs issued by other CAs. Policy mappings

allow an issuing CA to indicate that one or more of that issuer's policies can be considered

equivalent to another policy used in the subject CA's domain.

4.1.6 Certificate Subject and Issuer Attributes

These extensions support alternative names, in alternative formats, for a certificate subject or

certificate issuer and can convey additional information about the certificate subject, to increase

a certificate user's confidence that the certificate subject is a particular person or entity. For

example, information such as postal address, position within a corporation, or picture image

may be required.

The extension fields in this area include the following:

● Subject alternative name: Contains one or more alternative names, using any of a variety

of forms. This field is important for supporting certain applications, such as electronic mail,

EDI, and IPSec, which may employ their own name forms.

● Issuer alternative name: Contains one or more alternative names, using any of a variety of

forms.

● Subject directory attributes: Conveys any desired X.500 directory attribute values for the

subject of this certificate.

4.1.7 Certification Path Constraints

These extensions allow constraint specifications to be included in certificates issued for CAs

by other CAs. The constraints may restrict the types of certificates that can be issued by the

subject CA or that may occur subsequently in a certification chain.

The extension fields in this area include the following:

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 7

● Basic constraints: Indicates if the subject may act as a CA. If so, a certification path length

constraint may be specified.

● Name constraints: Indicates a name space within which all subject names in subsequent

certificates in a certification path must be located.

● Policy constraints: Specifies constraints that may require explicit certificate policy

identification or inhibit policy mapping for the remainder of the certification path.

4.2 Public-Key Infrastructure
RFC 2822 (Internet Security Glossary) defines public-key infrastructure (PKI) as the set of

hardware, software, people, policies, and procedures needed to create, manage, store,

distribute, and revoke digital certificates based on asymmetric cryptography. The principal

objective for developing a PKI is to enable secure, convenient, and efficient acquisition of

public keys. The Internet Engineering Task Force (IETF) Public Key Infrastructure X.509

(PKIX) working group has been the driving force behind setting up a formal (and generic)

model based on X.509 that is suitable for deploying a certificate-based architecture on the

Internet. This section describes the PKIX model.

Figure 4.4 shows the interrelationship among the key elements of the PKIX model. These

elements are

● End entity: A generic term used to denote end users, devices (e.g., servers, routers), or any

other entity that can be identified in the subject field of a public key certificate. End entities

typically consume and/or support PKI-related services.

● Certification authority (CA): The issuer of certificates and (usually) certificate revocation

lists (CRLs). It may also support a variety of administrative functions, although these are

often delegated to one or more Registration Authorities.

● Registration authority (RA): An optional component that can assume a number of

administrative functions from the CA. The RA is often associated with the End Entity

registration process, but can assist in a number of other areas as well.

● CRL issuer: An optional component that a CA can delegate to publish CRLs.

● Repository: A generic term used to denote any method for storing certificates and CRLs so

that they can be retrieved by End Entities.

Figure 4.4: PKIX architecture model

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 8

4.2.1 PKIX Management Functions

PKIX identifies a number of management functions that potentially need to be supported by

management protocols. These are indicated in Figure 4.4 and include the following:

● Registration: This is the process whereby a user first makes itself known to a CA (directly,

or through an RA), prior to that CA issuing a certificate or certificates for that user. Registration

begins the process of enrolling in a PKI. Registration usually involves some offline or online

procedure for mutual authentication. Typically, the end entity is issued one or more shared

secret keys used for subsequent authentication.

● Initialization: Before a client system can operate securely, it is necessary to install key

materials that have the appropriate relationship with keys stored elsewhere in the infrastructure.

For example, the client needs to be securely initialized with the public key and other assured

information of the trusted CA(s), to be used in validating certificate paths.

● Certification: This is the process in which a CA issues a certificate for a user's public key,

and returns that certificate to the user's client system and/or posts that certificate in a repository.

● Key pair recovery: Key pairs can be used to support digital signature creation and

verification, encryption and decryption, or both. When a key pair is used for

encryption/decryption, it is important to provide a mechanism to recover the necessary

decryption keys when normal access to the keying material is no longer possible, otherwise it

will not be possible to recover the encrypted data. Loss of access to the decryption key can

result from forgotten passwords/PINs, corrupted disk drives, damage to hardware tokens, and

so on. Key pair recovery allows end entities to restore their encryption/decryption key pair from

an authorized key backup facility (typically, the CA that issued the End Entity's certificate).

● Key pair update: All key pairs need to be updated regularly (i.e., replaced with a new key

pair) and new certificates issued. Update is required when the certificate lifetime expires and

as a result of certificate revocation.

● Revocation request: An authorized person advises a CA of an abnormal situation requiring

certificate revocation. Reasons for revocation include private key compromise, change in

affiliation, and name change.

● Cross certification: Two CAs exchange information used in establishing a cross-

certificate. A cross-certificate is a certificate issued by one CA to another CA that contains a

CA signature key used for issuing certificates.

4.2.2 PKIX Management Protocols

The PKIX working group has defines two alternative management protocols between PKIX

entities that support the management functions listed in the preceding subsection. RFC 2510

defines the certificate management protocols (CMP). Within CMP, each of the management

functions is explicitly identified by specific protocol exchanges. CMP is designed to be a

flexible protocol able to accommodate a variety of technical, operational, and business models.

RFC 2797 defines certificate management messages over CMS (CMC), where CMS

refers to RFC 2630, cryptographic message syntax. CMC is built on earlier work and is

intended to leverage existing implementations. Although all of the PKIX functions are

supported, the functions do not all map into specific protocol exchanges.

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 9

4.3 Remote user-authentication principles
User authentication is the fundamental security building block and the primary line of defense.

User authentication is the basic for more types of access control & user accountability. RFC

4949 defines user authentication as the process of verifying an identity claimed by or for a

system entity

This process consists of two steps:

• Identification step – Presenting an identifier to the security system.

• verification – presenting or generating authentication information that corroborates the
binding between the entity and the identifier

4.3.1 The NIST Model for electronic user authentication

Figure 4.5: the NIST SP 800-63-2 E-authentication architectural model

4.3.2 Means of User Authentication

Four means of authenticating user's identity

➢ based one something the individual

⚫ something the individual knows - e.g. password, PIN

⚫ something the individual possesses - e.g. key, token, smartcard

⚫ something the individual is (static biometrics) - e.g. fingerprint, retina

⚫ something the individual does (dynamic biometrics) - e.g. voice, sign

can use alone or combined, all can provide user authentication but all have issues.

4.3.3 Mutual Authentication

An important application area is that of mutual authentication protocols. Such protocols enable

communicating parties to satisfy themselves mutually about each other's identity and to

exchange session keys.

Central to the problem of authenticated key exchange are two issues: confidentiality

and timeliness. To prevent masquerade and to prevent compromise of session keys, essential

identification and session key information must be communicated in encrypted form. This

requires the prior existence of secret or public keys that can be used for this purpose. The

second issue, timeliness, is important because of the threat of message replays. Such replays,

at worst, could allow an opponent to compromise a session key or successfully impersonate

another party. At minimum, a successful replay can disrupt operations by presenting parties

with messages that appear genuine but are not.

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 10

lists the following examples of replay attacks:

● Simple replay: The opponent simply copies a message and replays it later.

● Repetition that can be logged: An opponent can replay a time stamped message within

the valid time window.

● Repetition that cannot be detected: This situation could arise because the original message

could have been suppressed and thus did not arrive at its destination; only the replay message

arrives.

● Backward replay without modification: This is a replay back to the message sender. This

attack is possible if symmetric encryption is used and the sender cannot easily recognize the

difference between messages sent and messages received on the basis of content.

One approach to coping with replay attacks is to attach a sequence number to each

message used in an authentication exchange. A new message is accepted only if its sequence

number is in the proper order. The difficulty with this approach is that it requires each party

to keep track of the last sequence number for each claimant it has dealt with. Because of this

overhead, sequence numbers are generally not used for authentication and key exchange.

Instead, one of the following two general approaches is used:

● Timestamps: Party A accepts a message as fresh only if the message contains a timestamp

that, in A's judgment, is close enough to A's knowledge of current time. This approach requires

that clocks among the various participants be synchronized.

● Challenge/response: Party A, expecting a fresh message from B, first sends B a nonce

(challenge) and requires that the subsequent message (response) received from B contain the

correct nonce value.

It can be argued that the timestamp approach should not be used for connection oriented

applications because of the inherent difficulties with this technique. First, some sort of protocol

is needed to maintain synchronization among the various processor clocks. This protocol must

be both fault tolerant, to cope with network errors, and secure, to cope with hostile attacks.

Second, the opportunity for a successful attack will arise if there is a temporary loss of

synchronization resulting from a fault in the clock mechanism of one of the parties. Finally,

because of the variable and unpredictable nature of network delays, distributed clocks cannot

be expected to maintain precise synchronization. Therefore, any timestamp-based procedure

must allow for a window of time sufficiently large to accommodate network delays yet

sufficiently small to minimize the opportunity for attack.

On the other hand, the challenge-response approach is unsuitable for a connectionless

type of application because it requires the overhead of a handshake before any connectionless

transmission, effectively negating the chief characteristic of a connectionless transaction. For

such applications, reliance on some sort of secure time server and a consistent attempt by

each party to keep its clocks in synchronization may be the best approach.

4.3.4 One-Way Authentication

One application for which encryption is growing in popularity is electronic mail (e-mail). The

very nature of electronic mail, and its chief benefit, is that it is not necessary for the sender and

receiver to be online at the same time. Instead, the e-mail message is forwarded to the receiver's

electronic mailbox, where it is buffered until the receiver is available to read it.

The "envelope" or header of the e-mail message must be in the clear, so that the message

can be handled by the store-and-forward e-mail protocol, such as the Simple Mail Transfer

Protocol (SMTP) or X.400. However, it is often desirable that the mail-handling protocol not

require access to the plaintext form of the message, because that would require trusting the

mail-handling mechanism.

Accordingly, the e-mail message should be encrypted such that the mail-handling

system is not in possession of the decryption key.

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 11

A second requirement is that of authentication. Typically, the recipient wants some

assurance that the message is from the alleged sender.

4.4 Remote User-authentication using symmetric encryption
A two-level hierarchy of symmetric encryption keys can be used to provide confidentiality for

communication in a distributed environment. In general, this strategy involves the use of a

trusted key distribution center (KDC). Each party in the network shares a secret key, known

as a master key, with the KDC. The KDC is responsible for generating keys to be used for a

short time over a connection between two parties, known as session keys, and for distributing

those keys using the master keys to protect the distribution. This approach is quite common.

Key distribution scenario illustrates a proposal initially put forth by Needham and

Schroeder for secret key distribution using a KDC that includes authentication features. The

protocol can be summarized as follows:

Secret keys Ka and Kb are shared between A and the KDC and B and the KDC,

respectively. The purpose of the protocol is to distribute securely a session key Ks to A and

B. A securely acquires a new session key in step 2. The message in step 3 can be decrypted,

and hence understood, only by B. Step 4 reflects B's knowledge of Ks, and step 5 assures B of

A's knowledge of Ks and assures B that this is a fresh message because of the use of the nonce

N2. The purpose of steps 4 and 5 is to prevent a certain type of replay attack. In particular, if

an opponent is able to capture the message in step 3 and replay it, this might in some fashion

disrupt operations at B. Despite the handshake of steps 4 and 5, the protocol is still vulnerable

to a form of replay attack. Suppose that an opponent, X, has been able to compromise an old

session key. Admittedly, this is a much more unlikely occurrence than that an opponent has

simply observed and recorded step 3. Nevertheless, it is a potential security risk. X can

impersonate A and trick B into using the old key by simply replaying step

3. Unless B remembers indefinitely all previous session keys used with A, B will be unable to

determine that this is a replay. If X can intercept the handshake message, step 4, then it can

impersonate A's response, step 5. From this point on, X can send bogus messages to B that

appear to B to come from A using an authenticated session key.

Denning proposes to overcome this weakness by a modification to the Needham/

Schroeder protocol that includes the addition of a timestamp to steps 2 and 3. Her proposal

assumes that the master keys, Ka and Kb are secure, and it consists of the following steps:

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 12

T is a timestamp that assures A and B that the session key has only just been generated. Thus,

both A and B know that the key distribution is a fresh exchange. A and B can verify timeliness

by checking that
|Clock T| < t1 + t2

where t1 is the estimated normal discrepancy between the KDC's clock and the local clock

(at A or B) and t2 is the expected network delay time. Each node can set its clock against

some standard reference source. Because the timestamp T is encrypted using the secure master

keys, an opponent, even with knowledge of an old session key, cannot succeed because a

replay of step 3 will be detected by B as untimely.

A final point: Steps 4 and 5 were not included in the original presentation but were

added Later. These steps confirm the receipt of the session key at B.

The Denning protocol seems to provide an increased degree of security compared to

the Needham/ Schroeder protocol. However, a new concern is raised: namely, that this new

scheme requires reliance on clocks that are synchronized throughout the network. points out a

risk involved. The risk is based on the fact that the distributed clocks can become

unsynchronized as a result of sabotage on or faults in the clocks or the synchronization

mechanism.

The problem occurs when a sender's clock is ahead of the intended recipient's clock.

In this case, an opponent can intercept a message from the sender and replay it later when the

timestamp in the message becomes current at the recipient's site. This replay could cause

unexpected results. Gong refers to such attacks as suppress-replay attacks.

One way to counter suppress-replay attacks is to enforce the requirement that parties

regularly check their clocks against the KDC's clock. The other alternative, which avoids the

need for clock synchronization, is to rely on handshaking protocols using nonces. This latter

alternative is not vulnerable to a suppress-replay attack because the nonces the recipient will

choose in the future are unpredictable to the sender. The Needham/Schroeder protocol relies

on nonces only but, as we have seen, has other vulnerabilities. An attempt is made to respond

to the concerns about suppress-replay attacks and at the same time fix the problems in the

Needham/Schroeder protocol. Subsequently, an inconsistency in this latter protocol was noted

and an improved strategy

The protocol is as follows:

Let us follow this exchange step by step.

1. A initiates the authentication exchange by generating a nonce, Na, and sending that plus its

identifier to B in plaintext. This nonce will be returned to A in an encrypted message that

includes the session key, assuring A of its timeliness.

2. B alerts the KDC that a session key is needed. Its message to the KDC includes its identifier

and a nonce, Nb This nonce will be returned to B in an encrypted message that includes the

session key, assuring B of its timeliness. B's message to the KDC also includes a block

encrypted with the secret key shared by B and the KDC. This block is used to instruct

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 13

the KDC to issue credentials to A; the block specifies the intended recipient of the credentials,

a suggested expiration time for the credentials, and the nonce received from A.

3. The KDC passes on to A B's nonce and a block encrypted with the secret key that B shares

with the KDC. The block serves as a "ticket" that can be used by A for subsequent

authentications, as will be seen. The KDC also sends to A a block encrypted with the secret

key shared by A and the KDC. This block verifies that B has received A's initial message (IDB)

and that this is a timely message and not a replay (Na) and it provides A with a session key

(Ks) and the time limit on its use (Tb).

4. A transmits the ticket to B, together with the B's nonce, the latter encrypted with the session

key. The ticket provides B with the secret key that is used to decrypt E(Ks, Nb) to recover the

nonce. The fact that B's nonce is encrypted with the session key authenticates that the message

came from A and is not a replay.

This protocol provides an effective, secure means for A and B to establish a session

with a secure session key. Furthermore, the protocol leaves A in possession of a key that can

be used for subsequent authentication to B, avoiding the need to contact the authentication

server repeatedly. Suppose that A and B establish a session using the aforementioned protocol

and then conclude that session. Subsequently, but within the time limit established by the

protocol, A desires a new session with B.

The following protocol ensues:

When B receives the message in step 1, it verifies that the ticket has not expired. The

newly generated nonces N'a and N'b assure each party that there is no replay attack. In all the

foregoing, the time specified in Tb is a time relative to B's clock. Thus, this timestamp does not

require synchronized clocks because B checks only self-generated timestamps.

4.4.1 One-Way Authentication

Using symmetric encryption, the decentralized key distribution scenario illustrated is

impractical. This scheme requires the sender to issue a request to the intended recipient, await

a response that includes a session key, and only then send the message.

With some refinement, the KDC strategy illustrated is a candidate for encrypted

electronic mail. Because we wish to avoid requiring that the recipient (B) be on line at the same

time as the sender (A), steps 4 and 5 must be eliminated. For a message with content M, the

sequence is as follows:

This approach guarantees that only the intended recipient of a message will be able to read it.

It also provides a level of authentication that the sender is A. As specified, the protocol does

not protect against replays. Some measure of defense could be provided by including a

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 14

timestamp with the message. However, because of the potential delays in the e-mail process,

such timestamps may have limited usefulness.

4.5 KERBEROS
Kerberos is an authentication service developed as part of Project Athena at MIT. The problem

that Kerberos addresses is this: Assume an open distributed environment in which users at

workstations wish to access services on servers distributed throughout the network. We would

like for servers to be able to restrict access to authorized users and to be able to authenticate

requests for service. In this environment, a workstation cannot be trusted to identify its users

correctly to network services.

In particular, the following three threats exist:

1. A user may gain access to a particular workstation and pretend to be another user

operating from that workstation.

2. A user may alter the network address of a workstation so that the requests sent from

the altered workstation appear to come from the impersonated workstation.

3. A user may eavesdrop on exchanges and use a replay attack to gain entrance to a

server or to disrupt operations.

In any of these cases, an unauthorized user may be able to gain access to services and data that

he or she is not authorized to access. Rather than building in elaborate authentication protocols

at each server, Kerberos provides a centralized authentication server whose function is to

authenticate users to servers and servers to users.

Unlike most other authentication schemes, Kerberos relies exclusively on symmetric

encryption, making no use of public-key encryption.

Two versions of Kerberos are in common use. Version 4 implementations still exist.

Version 5 corrects some of the security deficiencies of version 4 and has been issued as a

proposed Internet Standard (RFC 1510).

4.5.1 Motivation

If a set of users is provided with dedicated personal computers that have no network

connections, then a user's resources and files can be protected by physically securing each

personal computer. When these users instead are served by a centralized time-sharing system,

the time-sharing operating system must provide the security. The operating system can enforce

access control policies based on user identity and use the logon procedure to identify users.

Today, neither of these scenarios is typical. More common is a distributed architecture

consisting of dedicated user workstations (clients) and distributed or centralized servers.

In this environment, three approaches to security can be envisioned:

1. Rely on each individual client workstation to assure the identity of its user or users

and rely on each server to enforce a security policy based on user identification (ID).

2. Require that client systems authenticate themselves to servers, but trust the client

system concerning the identity of its user.

3. Require the user to prove his or her identity for each service invoked. Also require

that servers prove their identity to clients.

In a small, closed environment, in which all systems are owned and operated by a single

organization, the first or perhaps the second strategy may suffice. But in a more open

environment, in which network connections to other machines are supported, the third

approach is needed to protect user information and resources housed at the server. Kerberos

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 15

supports this third approach. Kerberos assumes a distributed client/server architecture and

employs one or more Kerberos servers to provide an authentication service.

The first published report on Kerberos listed the following requirements:

● Secure: A network eavesdropper should not be able to obtain the necessary information to

impersonate a user. More generally, Kerberos should be strong enough that a potential

opponent does not find it to be the weak link.

● Reliable: For all services that rely on Kerberos for access control, lack of availability of

the Kerberos service means lack of availability of the supported services. Hence, Kerberos

should be highly reliable and should employ a distributed server architecture, with one system

able to back up another.

● Transparent: Ideally, the user should not be aware that authentication is taking place,

beyond the requirement to enter a password.

● Scalable: The system should be capable of supporting large numbers of clients and servers.

This suggests a modular, distributed architecture.

To support these requirements, the overall scheme of Kerberos is that of a trusted third-

party authentication service that uses a protocol based on that proposed by Needham and

Schroeder. It is trusted in the sense that clients and servers trust Kerberos to mediate their

mutual authentication. Assuming the Kerberos protocol is well designed, then the

authentication service is secure if the Kerberos server itself is secure.

4.5.2 Kerberos Version 4
Version 4 of Kerberos makes use of DES, in a rather elaborate protocol, to provide the

authentication service. Viewing the protocol as a whole, it is difficult to see the need for the

many elements contained therein. Therefore, we adopt a strategy used by Bill Bryant of Project

Athena and build up to the full protocol by looking first at several hypothetical dialogues. Each

successive dialogue adds additional complexity to counter security vulnerabilities revealed in

the preceding dialogue.

After examining the protocol, we look at some other aspects of version 4.

4.5.3 A Simple Authentication Dialogue

In an unprotected network environment, any client can apply to any server for service. The

obvious security risk is that of impersonation. An opponent can pretend to be another client

and obtain unauthorized privileges on server machines. To counter this threat, servers must be

able to confirm the identities of clients who request service. Each server can be required to

undertake this task for each client/server interaction, but in an open environment, this places a

substantial burden on each server.

An alternative is to use an authentication server (AS) that knows the passwords of all

users and stores these in a centralized database. In addition, the AS shares a unique secret key

with each server. These keys have been distributed physically or in some other secure manner.

Consider the following hypothetical dialogue:

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 16

In this scenario, the user logs on to a workstation and requests access to server V. The client

module C in the user's workstation requests the user's password and then sends a message to

the AS that includes the user's ID, the server's ID, and the user's password. The AS checks its

database to see if the user has supplied the proper password for this user ID and whether this

user is permitted access to server V. If both tests are passed, the AS accepts the user as authentic

and must now convince the server that this user is authentic. To do so, the AS creates a ticket

that contains the user's ID and network address and the server's ID. This ticket is encrypted

using the secret key shared by the AS and this server. This ticket is then sent back to C.

Because the ticket is encrypted, it cannot be altered by C or by an opponent. With this

ticket, C can now apply to V for service. C sends a message to V containing C's ID and the

ticket. V decrypts the ticket and verifies that the user ID in the ticket is the same as the

unencrypted user ID in the message. If these two match, the server considers the user

authenticated and grants the requested service.

Each of the ingredients of message (3) is significant. The ticket is encrypted to prevent

alteration or forgery. The server's ID (IDV) is included in the ticket so that the server

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 17

can verify that it has decrypted the ticket properly. IDC is included in the ticket to indicate that

this ticket has been issued on behalf of C. Finally, ADC serves to counter the following threat.

An opponent could capture the ticket transmitted in message (2), then use the name IDC and

transmit a message of form (3) from another workstation.

The server would receive a valid ticket that matches the user ID and grant access to the

user on that other workstation. To prevent this attack, the AS includes in the ticket the network

address from which the original request came. Now the ticket is valid only if it is transmitted

from the same workstation that initially requested the ticket.

4.5.4 A More Secure Authentication Dialogue

Although the foregoing scenario solves some of the problems of authentication in an open

network environment, problems remain. Two in particular stand out. First, we would like to

minimize the number of times that a user has to enter a password. Suppose each ticket can be

used only once. If user C logs on to a workstation in the morning and wishes to check his or

her mail at a mail server, C must supply a password to get a ticket for the mail server. If C

wishes to check the mail several times during the day, each attempt requires reentering the

password. We can improve matters by saying that tickets are reusable.

For a single logon session, the workstation can store the mail server ticket after it is

receive and use it on behalf of the user for multiple accesses to the mail server. However, under

this scheme it remains the case that a user would need a new ticket for every different service.

If a user wished to access a print server, a mail server, a file server, and so on, the first

instance of each access would require a new ticket and hence require the user to enter the

password.

The second problem is that the earlier scenario involved a plaintext transmission of the

password [message (1)]. An eavesdropper could capture the password and use any service

accessible to the victim.

To solve these additional problems, we introduce a scheme for avoiding plaintext

passwords and a new server, known as the ticket-granting server (TGS). The new but still

hypothetical scenario is as follows:

The new service, TGS, issues tickets to users who have been authenticated to AS. Thus,

the user first requests a ticket-granting ticket (Tickettgs) from the AS. The client module in the

user workstation saves this ticket. Each time the user requires access to a new service, the client

applies to the TGS, using the ticket to authenticate itself. The TGS then grants a ticket for the

particular service. The client saves each service-granting ticket and uses it to authenticate its

user to a server each time a particular service is requested.

Let us look at the details of this scheme:

1. The client requests a ticket-granting ticket on behalf of the user by sending its user's ID and

password to the AS, together with the TGS ID, indicating a request to use the TGS service.

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 18

2. The AS responds with a ticket that is encrypted with a key that is derived from the user's

password. When this response arrives at the client, the client prompts the user for his or her

password, generates the key, and attempts to decrypt the incoming message. If the correct

password is supplied, the ticket is successfully recovered.

Because only the correct user should know the password, only the correct user can

recover the ticket. Thus, we have used the password to obtain credentials from Kerberos

without having to transmit the password in plaintext. The ticket itself consists of the ID and

network address of the user, and the ID of the TGS. This corresponds to the first scenario.

The idea is that the client can use this ticket to request multiple service-granting tickets. So the

ticket-granting ticket is to be reusable.

However, we do not wish an opponent to be able to capture the ticket and use it.

Consider the following scenario: An opponent captures the login ticket and waits until the user

has logged off his or her workstation. Then the opponent either gains access to that workstation

or configures his workstation with the same network address as that of the victim. The

opponent would be able to reuse the ticket to spoof the TGS.

To counter this, the ticket includes a timestamp, indicating the date and time at which

the ticket was issued, and a lifetime, indicating the length of time for which the ticket is valid

(e.g., eight hours). Thus, the client now has a reusable ticket and need not bother the user for

a password for each new service request. Finally, note that the ticket-granting ticket is

encrypted with a secret key known only to the AS and the TGS. This prevents alteration of

the ticket. The ticket is reencrypted with a key based on the user's password. This assures that

the ticket can be recovered only by the correct user, providing the authentication.

Now that the client has a ticket-granting ticket, access to any server can be obtained with steps

3 and 4:

3. The client requests a service-granting ticket on behalf of the user. For this purpose, the client

transmits a message to the TGS containing the user's ID, the ID of the desired service, and the

ticket-granting ticket.

4. The TGS decrypts the incoming ticket and verifies the success of the decryption by the

presence of its ID. It checks to make sure that the lifetime has not expired. Then it compares

the user ID and network address with the incoming information to authenticate the user. If the

user is permitted access to the server V, the TGS issues a ticket to grant access to the requested

service.

The service-granting ticket has the same structure as the ticket-granting ticket. Indeed,

because the TGS is a server, we would expect that the same elements are needed to authenticate

a client to the TGS and to authenticate a client to an application server. Again, the ticket

contains a timestamp and lifetime.

If the user wants access to the same service at a later time, the client can simply use the

previously acquired service-granting ticket and need not bother the user for a password. Note

that the ticket is encrypted with a secret key (Kv) known only to the TGS and the server,

preventing alteration.

Finally, with a particular service-granting ticket, the client can gain access to the corresponding

service with step 5:

5. The client requests access to a service on behalf of the user. For this purpose, the client

transmits a message to the server containing the user's ID and the service-granting ticket. The

server authenticates by using the contents of the ticket.

This new scenario satisfies the two requirements of only one password query per user session

and protection of the user password.

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 19

4.5.5 The Version 4 Authentication Dialogue

Although the foregoing scenario enhances security compared to the first attempt, two

additional problems remain. The heart of the first problem is the lifetime associated with the

ticket-granting ticket. If this lifetime is very short (e.g., minutes), then the user will be

repeatedly asked for a password.

If the lifetime is long (e.g., hours), then an opponent has a greater opportunity for replay.

An opponent could eavesdrop on the network and capture a copy of the ticket- granting ticket

and then wait for the legitimate user to log out. Then the opponent could forge the legitimate

user's network address and send the message of step (3) to the TGS. This would give the

opponent unlimited access to the resources and files available to the legitimate user.

Similarly, if an opponent captures a service-granting ticket and uses it before it expires,

the opponent has access to the corresponding service. Thus, we arrive at an additional

requirement. A network service (the TGS or an application service) must be able to prove that

the person using a ticket is the same person to whom that ticket was issued.

The second problem is that there may be a requirement for servers to authenticate

themselves to users. Without such authentication, an opponent could sabotage the configuration

so that messages to a server were directed to another location. The false server would then be

in a position to act as a real server and capture any information from the user and deny the true

service to the user.

We examine these problems in turn and refer to Table 4.1, which shows the actual

Kerberos protocol.

Table 4.1: Summary of Kerberos Version 4 Message Exchanges

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 20

First, consider the problem of captured ticket-granting tickets and the need to determine that

the ticket presenter is the same as the client for whom the ticket was issued. The threat is that

an opponent will steal the ticket and use it before it expires. To get around this problem, let us

have the AS provide both the client and the TGS with a secret piece of information in a

secure manner. Then the client can prove its identity to the TGS by revealing the secret

information, again in a secure manner. An efficient way of accomplishing this is to use an

encryption key as the secure information; this is referred to as a session key in Kerberos.

Table 4.1a shows the technique for distributing the session key. As before, the client

sends a message to the AS requesting access to the TGS. The AS responds with a message,

encrypted with a key derived from the user's password (Kc) that contains the ticket. The

encrypted message also contains a copy of the session key, Kc,tgs, where the subscripts indicate

that this is a session key for C and TGS. Because this session key is inside the message

encrypted with Kc, only the user's client can read it. The same session key is included in the

ticket, which can be read only by the TGS. Thus, the session key has been securely delivered

to both C and the TGS.

Note that several additional pieces of information have been added to this first phase of

the dialogue. Message (1) includes a timestamp, so that the AS knows that the message is

timely. Message (2) includes several elements of the ticket in a form accessible to C. This

enables C to confirm that this ticket is for the TGS and to learn its expiration time.

Armed with the ticket and the session key, C is ready to approach the TGS. As before,

C sends the TGS a message that includes the ticket plus the ID of the requested service

(message (3) in Table 4.1b). In addition, C transmits an authenticator, which includes the ID

and address of C's user and a timestamp. Unlike the ticket, which is reusable, the authenticator

is intended for use only once and has a very short lifetime. The TGS can decrypt the ticket

with the key that it shares with the AS. This ticket indicates that user C has been provided with

the session key Kc,tgs. In effect, the ticket says, "Anyone who uses Kc,tgs must be C." The

TGS uses the session key to decrypt the authenticator. The TGS can then check the name and

address from the authenticator with that of the ticket and with the network address of the

incoming message. If all match, then the TGS is assured that the sender of the ticket is indeed

the ticket's real owner.

In effect, the authenticator says, "At time TS3, I hereby use Kc,tgs." Note that the ticket

does not prove anyone's identity but is a way to distribute keys securely. It is the authenticator

that proves the client's identity. Because the authenticator can be used only once and has a short

lifetime, the threat of an opponent stealing both the ticket and the authenticator for presentation

later is countered.

The reply from the TGS, in message (4), follows the form of message (2). The message

is encrypted with the session key shared by the TGS and C and includes a session key to be

shared between C and the server V, the ID of V, and the timestamp of the ticket. The ticket

itself includes the same session key. C now has a reusable service-granting ticket for V. When

C presents this ticket, as shown in message (5), it also sends an authenticator. The server can

decrypt the ticket, recover the session key, and decrypt the authenticator.

If mutual authentication is required, the server can reply as shown in message (6) of Table

4.1. The server returns the value of the timestamp from the authenticator, incremented by 1,

and encrypted in the session key. C can decrypt this message to recover the incremented

timestamp. Because the message was encrypted by the session key, C is assured that it could

have been created only by V. The contents of the message assure C that this is not a replay of

an old reply.

Finally, at the conclusion of this process, the client and server share a secret key. This

key can be used to encrypt future messages between the two or to exchange a new random

session key for that purpose.

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 21

Figure 4.6: Overview of Kerberos

Figure 4.7: Kerberos Exchanges

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 22

Table 4.2 summarizes the justification for each of the elements in the Kerberos protocol.

Table 4.2: Rationale for the elements of the Kerberos Version 4 protocol.

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 23

4.5.6 Kerberos Realms and Multiple Kerberi

A full-service Kerberos environment consisting of a Kerberos server, a number of clients, and

a number of application servers requires the following:

1. The Kerberos server must have the user ID and hashed passwords of all participating

users in its database. All users are registered with the Kerberos server.

2. The Kerberos server must share a secret key with each server. All servers are

registered with the Kerberos server.

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 24

Such an environment is referred to as a Kerberos realm. The concept of realm can be

explained as follows. A Kerberos realm is a set of managed nodes that share the same Kerberos

database. The Kerberos database resides on the Kerberos master computer system, which

should be kept in a physically secure room. A read-only copy of the Kerberos database might

also reside on other Kerberos computer systems. However, all changes to the database must be

made on the master computer system.

Changing or accessing the contents of a Kerberos database requires the Kerberos master

password. A related concept is that of a Kerberos principal, which is a service or user that is

known to the Kerberos system. Each Kerberos principal is identified by its principal name.

Principal names consist of three parts: a service or user name, an instance name, and a realm

name

Networks of clients and servers under different administrative organizations typically

constitute different realms. That is, it generally is not practical, or does not conform to

administrative policy, to have users and servers in one administrative domain registered with

a Kerberos server elsewhere. However, users in one realm may need access to servers in other

realms, and some servers may be willing to provide service to users from other realms, provided

that those users are authenticated.

Kerberos provides a mechanism for supporting such interrealm authentication. For two realms

to support interrealm authentication, a third requirement is added:

3. The Kerberos server in each interoperating realm shares a secret key with the server in

the other realm. The two Kerberos servers are registered with each other.

The scheme requires that the Kerberos server in one realm trust the Kerberos server in the

other realm to authenticate its users. Furthermore, the participating servers in the second

realm must also be willing to trust the Kerberos server in the first realm.

With these ground rules in place, we can describe the mechanism as follows (Figure 4.):

A user wishing service on a server in another realm needs a ticket for that server. The user's

client follows the usual procedures to gain access to the local TGS and then requests a ticket-

granting ticket for a remote TGS (TGS in another realm). The client can then apply to the

remote TGS for a service-granting ticket for the desired server in the realm of the remote TGS.

Figure 4.8: Request for service in another realm

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 25

The details of the exchanges illustrated in Figure 4.8 are as follows (compare Table 4.1):

The ticket presented to the remote server (Vrem) indicates the realm in which the user was

originally authenticated. The server chooses whether to honor the remote request.

One problem presented by the foregoing approach is that it does not scale well to many

realms. If there are N realms, then there must be N(N 1)/2 secure key exchanges so that each

Kerberos realm can interoperate with all other Kerberos realms.

4.5.7 Kerberos Version 5

Kerberos Version 5 is specified in RFC 1510 and provides a number of improvements over

version 4. To begin, we provide an overview of the changes from version 4 to version 5 and

then look at the version 5 protocol.

Differences between Versions 4 and 5

Version 5 is intended to address the limitations of version 4 in two areas: environmental

shortcomings and technical deficiencies. Let us briefly summarize the improvements in each

area.

Kerberos Version 4 was developed for use within the Project Athena environment and,

accordingly, did not fully address the need to be of general purpose. This led to the following

environmental shortcomings:

1. Encryption system dependence: Version 4 requires the use of DES. Export restriction

on DES as well as doubts about the strength of DES were thus of concern. In version 5,

ciphertext is tagged with an encryption type identifier so that any encryption technique

may be used. Encryption keys are tagged with a type and a length, allowing the same

key to be used in different algorithms and allowing the specification of different

variations on a given algorithm.

2. Internet protocol dependence: Version 4 requires the use of Internet Protocol (IP)

addresses. Other address types, such as the ISO network address, are not

accommodated. Version 5 network addresses are tagged with type and length, allowing

any network address type to be used.

3. Message byte ordering: In version 4, the sender of a message employs a byte ordering

of its own choosing and tags the message to indicate least significant byte in lowest

address or most significant byte in lowest address. This techniques works but does not

follow established conventions. In version 5, all message structures are defined using

Abstract Syntax Notation One (ASN.1) and Basic Encoding Rules (BER), which

provide an unambiguous byte ordering.

4. Ticket lifetime: Lifetime values in version 4 are encoded in an 8-bit quantity in units

of five minutes. Thus, the maximum lifetime that can be expressed is 28 x 5 = 1280

minutes, or a little over 21 hours. This may be inadequate for some applications (e.g.,

a long-running simulation that requires valid Kerberos credentials throughout

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 26

execution). In version 5, tickets include an explicit start time and end time, allowing

tickets with arbitrary lifetimes.

5. Authentication forwarding: Version 4 does not allow credentials issued to one client

to be forwarded to some other host and used by some other client. This capability would

enable a client to access a server and have that server access another server on behalf

of the client. For example, a client issues a request to a print server that then accesses

the client's file from a file server, using the client's credentials for access. Version 5

provides this capability.

6. Interrealm authentication: In version 4, interoperability among N realms requires on

the order of N2 Kerberos-to-Kerberos relationships, as described earlier. Version 5

supports a method that requires fewer relationships, as described shortly.

Apart from these environmental limitations, there are technical deficiencies in the version 4

protocol itself. Most of these deficiencies were documented, and version 5 attempts to address

these. The deficiencies are the following:

1. Double encryption: Note in Table 4.1 [messages (2) and (4)] that tickets provided to

clients are encrypted twice, once with the secret key of the target server and then again

with a secret key known to the client. The second encryption is not necessary and is

computationally wasteful.

2. PCBC encryption: Encryption in version 4 makes use of a nonstandard mode of DES

known as propagating cipher block chaining (PCBC). It has been demonstrated that this

mode is vulnerable to an attack involving the interchange of ciphertext blocks. PCBC

was intended to provide an integrity check as part of the encryption operation. Version

5 provides explicit integrity mechanisms, allowing the standard CBC mode to be used

for encryption. In particular, a checksum or hash code is attached to the message prior

to encryption using CBC.

3. Session keys: Each ticket includes a session key that is used by the client to encrypt the

authenticator sent to the service associated with that ticket. In addition, the session key

may subsequently be used by the client and the server to protect messages passed during

that session. However, because the same ticket may be used repeatedly to gain service

from a particular server, there is the risk that an opponent will replay messages from

an old session to the client or the server. In version 5, it is possible for a client and

server to negotiate a subsession key, which is to be used only for that one connection.

A new access by the client would result in the use of a new subsession key.

4. Password attacks: Both versions are vulnerable to a password attack. The message

from the AS to the client includes material encrypted with a key based on the client's

password. An opponent can capture this message and attempt to decrypt it by trying

various passwords. If the result of a test decryption is of the proper form, then the

opponent has discovered the client's password and may subsequently use it to gain

authentication credentials from Kerberos. This is the same type of password attack, with

the same kinds of countermeasures being applicable. Version 5 does provide a

mechanism known as preauthentication, which should make password attacks more

difficult, but it does not prevent them.

4.5.8 The Version 5 Authentication Dialogue

Table 4.3 summarizes the basic version 5 dialogue. This is best explained by comparison with

version 4 (Table 4.1).

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 27

Table 4.3: Summary of Kerberos Version 5 Message Exchanges

First, consider the authentication service exchange. Message (1) is a client request for a ticket

granting ticket. As before, it includes the ID of the user and the TGS. The following new

elements are added:

● Realm: Indicates realm of user

● Options: Used to request that certain flags be set in the returned ticket

● Times: Used by the client to request the following time settings in the ticket:

from: the desired start time for the requested ticket

till: the requested expiration time for the requested ticket

rtime: requested renew-till time

● Nonce: A random value to be repeated in message (2) to assure that the response is fresh

and has not been replayed by an opponent Message (2) returns a ticket-granting ticket,

identifying information for the client, and a block encrypted using the encryption key based

on the user's password. This block includes the session key to be used between the client and

the TGS, times specified in message (1), the nonce from message (1), and TGS identifying

information. The ticket itself includes the session key, identifying information for the client,

the requested time values, and flags that reflect the status of this ticket and the requested

options.

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 28

These flags introduce significant new functionality to version 5. For now, we defer a

discussion of these flags and concentrate on the overall structure of the version 5 protocol.

Let us now compare the ticket-granting service exchange for versions 4 and 5. We

see that message (3) for both versions includes an authenticator, a ticket, and the name of the

requested service. In addition, version 5 includes requested times and options for the ticket and

a nonce, all with functions similar to those of message (1). The authenticator itself is essentially

the same as the one used in version 4.

Message (4) has the same structure as message (2), returning a ticket plus information

needed by the client, the latter encrypted with the session key now shared by the client and

the TGS.

Finally, for the client/server authentication exchange, several new features appear in version

5. In message (5), the client may request as an option that mutual authentication is required.

The authenticator includes several new fields as follows:

● Subkey: The client's choice for an encryption key to be used to protect this specific

application session. If this field is omitted, the session key from the ticket (Kc,v) is used.

● Sequence number: An optional field that specifies the starting sequence number to be used

by the server for messages sent to the client during this session. Messages may be sequence

numbered to detect replays.

If mutual authentication is required, the server responds with message (6). This message

includes the timestamp from the authenticator. Note that in version 4, the timestamp was

incremented by one. This is not necessary in version 5 because the nature of the format of

messages is such that it is not possible for an opponent to create message (6) without knowledge

of the appropriate encryption keys. The subkey field, if present, overrides the subkey field, if

present, in message (5). The optional sequence number field specifies the starting sequence

number to be used by the client.

4.5.9 Ticket Flags

The flags field included in tickets in version 5 supports expanded functionality compared to

that available in version 4. Table 4.4 summarizes the flags that may be included in a ticket.

Table 4.4. Kerberos Version 5 Flags

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 29

The INITIAL flag indicates that this ticket was issued by the AS, not by the TGS. When a client

requests a service-granting ticket from the TGS, it presents a ticket-granting ticket obtained

from the AS. In version 4, this was the only way to obtain a service-granting ticket. Version 5

provides the additional capability that the client can get a service-granting ticket directly from

the AS. The utility of this is as follows: A server, such as a password-changing server, may

wish to know that the client's password was recently tested.

The PRE-AUTHENT flag, if set, indicates that when the AS received the initial request

[message (1)], it authenticated the client before issuing a ticket. The exact form of this

preauthentication is left unspecified. As an example, the MIT implementation of version 5 has

encrypted timestamp preauthentication, enabled by default. When a user wants to get a ticket,

it has to send to the AS a preauthentication block containing a random confounder, a version

number, and a timestamp, encrypted in the client's password-based key. The AS decrypts the

block and will not send a ticket-granting ticket back unless the timestamp in the

preauthentication block is within the allowable time skew (time interval to account for clock

drift and network delays). Another possibility is the use of a smart card that generates

continually changing passwords that are included in the preauthenticated messages.

The passwords generated by the card can be based on a user's password but be

transformed by the card so that, in effect, arbitrary passwords are used. This prevents an

attack based on easily guessed passwords. If a smart card or similar device was used, this is

indicated by the HW-AUTHENT flag. When a ticket has a long lifetime, there is the potential

for it to be stolen and used by an opponent for a considerable period. If a short lifetime is used

to lessen the threat, then overhead is involved in acquiring new tickets. In the case of a ticket-

granting ticket, the client would either have to store the user's secret key, which is clearly risky,

or repeatedly ask the user for a password.

A compromise scheme is the use of renewable tickets. A ticket with the RENEWABLE

flag set includes two expiration times: one for this specific ticket and one that is the latest

permissible value for an expiration time. A client can have the ticket renewed by presenting it

to the TGS with a requested new expiration time. If the new time is within the limit of the latest

permissible value, the TGS can issue a new ticket with a new session time and a later specific

expiration time. The advantage of this mechanism is that the TGS may refuse to renew a ticket

reported as stolen. A client may request that the AS provide a ticket- granting ticket with the

MAY-POSTDATE flag set. The client can then use this ticket to request a ticket that is flagged

as POSTDATED and INVALID from the TGS. Subsequently, the client may submit the

postdated ticket for validation.

This scheme can be useful for running a long batch job on a server that requires a ticket

periodically. The client can obtain a number of tickets for this session at once, with spread-out

time values. All but the first ticket are initially invalid. When the execution reaches a point in

time when a new ticket is required, the client can get the appropriate ticket validated. With this

approach, the client does not have to repeatedly use its ticketgranting ticket to obtain a service-

granting ticket.

In version 5 it is possible for a server to act as a proxy on behalf of a client, in effect

adopting the credentials and privileges of the client to request a service from another server.

If a client wishes to use this mechanism, it requests a ticket-granting ticket with the

PROXIABLE flag set. When this ticket is presented to the TGS, the TGS is permitted to issue

a service-granting ticket with a different network address; this latter ticket will have its PROXY

flag set. An application receiving such a ticket may accept it or require additional authentication

to provide an audit trail.

The proxy concept is a limited case of the more powerful forwarding procedure. If a

ticket is set with the FORWARDABLE flag, a TGS can issue to the requestor a ticket- granting

ticket with a different network address and the FORWARDED flag set. This ticket

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 30

can then be presented to a remote TGS. This capability allows a client to gain access to a server

on another realm without requiring that each Kerberos maintain a secret key with Kerberos

servers in every other realm. For example, realms could be structured hierarchically. Then a

client could walk up the tree to a common node and then back down to reach a target realm.

Each step of the walk would involve forwarding a ticket-granting ticket to the next TGS in the

path.

4.6 Remote User-authentication using asymmetric encryption

Mutual authentication

we presented one approach to the use of public-key encryption for the purpose of session key

distribution. This protocol assumes that each of the two parties is in possession of the current

public key of the other. It may not be practical to require this assumption.

A protocol using timestamps is provided:

In this case, the central system is referred to as an authentication server (AS), because it is not

actually responsible for secret key distribution. Rather, the AS provides public-key certificates.

The session key is chosen and encrypted by A; hence, there is no risk of exposure by the AS.

The timestamps protect against replays of compromised keys.

This protocol is compact but, as before, requires synchronization of clocks. Another

approach, proposed by Woo and Lam, makes use of nonces.

The protocol consists of the following steps:

In step 1, A informs the KDC of its intention to establish a secure connection with B. The KDC

returns to A a copy of B's public-key certificate (step 2). Using B's public key, A

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 31

informs B of its desire to communicate and sends a nonce Na (step 3). In step 4, B asks the

KDC for A's public-key certificate and requests a session key; B includes A's nonce so that the

KDC can stamp the session key with that nonce. The nonce is protected using the KDC's public

key. In step 5, the KDC returns to B a copy of A's public-key certificate, plus the information

{Na, Ks, IDB}. This information basically says that Ks is a secret key generated by the KDC

on behalf of B and tied to Na; the binding of Ks and Na will assure A that Ks is fresh. This

triple is encrypted, using the KDC's private key, to allow B to verify that the triple is in fact

from the KDC. It is also encrypted using B's public key, so that no other entity may use the

triple in an attempt to establish a fraudulent connection with A. In step 6, the triple

{Na, Ks, IDB}, still encrypted with the KDC's private key, is relayed to A, together with a

nonce Nb generated by B. All the foregoing are encrypted using A's public key. A retrieves the

session key Ks and uses it to encrypt Nb and return it to B. This last message assures B of A's

knowledge of the session key.

This seems to be a secure protocol that takes into account the various attacks. However,

the authors themselves spotted a flaw and submitted a revised version of the algorithm

The identifier of A, IDA, is added to the set of items encrypted with the KDC's private key in

steps 5 and 6. This binds the session key Ks to the identities of the two parties that will be

engaged in the session.

This inclusion of IDA accounts for the fact that the nonce value Na is considered unique

only among all nonces generated by A, not among all nonces generated by all parties. Thus, it

is the pair {IDA, Na} that uniquely identifies the connection request of A.

In both this example and the protocols described earlier, protocols that appeared secure

were revised after additional analysis. These examples highlight the difficulty of getting things

right in the area of authentication.

4.6.1 One-Way Authentication

We have already presented public-key encryption approaches that are suited to electronic mail,

including the straightforward encryption of the entire message for confidentiality,

authentication, or both. These approaches require that either the sender know the recipient's

public key (confidentiality) or the recipient know the sender's public key (authentication) or

both (confidentiality plus authentication). In addition, the public-key algorithm must be applied

once or twice to what may be a long message.

If confidentiality is the primary concern, then the following may be more efficient:

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 32

In this case, the message is encrypted with a one-time secret key. A also encrypts this one- time

key with B's public key. Only B will be able to use the corresponding private key to recover

the one-time key and then use that key to decrypt the message. This scheme is more efficient

than simply encrypting the entire message with B's public key.

If authentication is the primary concern, then a digital signature may suffice, as was illustrated

This method guarantees that A cannot later deny having sent the message. However, this

technique is open to another kind of fraud. Bob composes a message to his boss Alice that

contains an idea that will save the company money. He appends his digital signature and sends

it into the e-mail system. Eventually, the message will get delivered to Alice's mailbox. But

suppose that Max has heard of Bob's idea and gains access to the mail queue before delivery.

He finds Bob's message, strips off his signature, appends his, and requeues the message to be

delivered to Alice. Max gets credit for Bob's idea.

To counter such a scheme, both the message and signature can be encrypted with the

recipient's public key:

The latter two schemes require that B know A's public key and be convinced that it is timely.

An effective way to provide this assurance is the digital certificate. Now we have

In addition to the message, A sends B the signature, encrypted with A's private key, and A's

certificate, encrypted with the private key of the authentication server. The recipient of the

message first uses the certificate to obtain the sender's public key and verify that it is authentic

and then uses the public key to verify the message itself. If confidentiality is required, then the

entire message can be encrypted with B's public key. Alternatively, the entire message can be

encrypted with a one-time secret key; the secret key is also transmitted, encrypted with B's

public key.

4.7 Electronic Mail Security
4.7.1 Pretty Good Privacy

PGP is a remarkable phenomenon. Largely the effort of a single person, Phil Zimmermann,

PGP provides a confidentiality and authentication service that can be used for electronic mail

and file storage applications. In essence, Zimmermann has done the following:

1. Selected the best available cryptographic algorithms as building blocks

2. Integrated these algorithms into a general-purpose application that is independent of

operating system and processor and that is based on a small set of easy-to-use commands

3. Made the package and its documentation, including the source code, freely available via

the Internet, bulletin boards, and commercial networks such as AOL (America On Line)

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 33

4. Entered into an agreement with a company (Viacrypt, now Network Associates) to provide

a fully compatible, low-cost commercial version of PGP

PGP has grown explosively and is now widely used. A number of reasons can be cited for

this growth:

1. It is available free worldwide in versions that run on a variety of platforms, including

Windows, UNIX, Macintosh, and many more. In addition, the commercial version

satisfies users who want a product that comes with vendor support.

2. It is based on algorithms that have survived extensive public review and are considered

extremely secure. Specifically, the package includes RSA, DSS, and Diffie-Hellman

for public-key encryption; CAST-128, IDEA, and 3DES for symmetric encryption; and

SHA-1 for hash coding.

3. It has a wide range of applicability, from corporations that wish to select and enforce

a standardized scheme for encrypting files and messages to individuals who wish to

communicate securely with others worldwide over the Internet and other networks.

4. It was not developed by, nor is it controlled by, any governmental or standards

organization. For those with an instinctive distrust of "the establishment," this makes

PGP attractive.

5. PGP is now on an Internet standards track (RFC 3156). Nevertheless, PGP still has an

aura of an antiestablishment endeavor.

We begin with an overall look at the operation of PGP. Next, we examine how cryptographic

keys are created and stored. Then, we address the vital issue of public key management.

4.7.2 Notation

Most of the notation used in this chapter has been used before, but a few terms are new. It is

perhaps best to summarize those at the beginning. The following symbols are used:

The PGP documentation often uses the term secret key to refer to a key paired with a public

key in a public-key encryption scheme. As was mentioned earlier, this practice risks confusion

with a secret key used for symmetric encryption. Hence, we will use the term private key

instead.

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 34

4.7.3 Operational Description

The actual operation of PGP, as opposed to the management of keys, consists of five services:

authentication, confidentiality, compression, e-mail compatibility, and segmentation (Table

4.5). We examine each of these in turn.

Table 4.5: Summary of PGP Services

Authentication

Figure 4.a illustrates the digital signature service provided by PGP. This is the digital

signature scheme. The sequence is as follows:

1. The sender creates a message.

2. SHA-1 is used to generate a 160-bit hash code of the message.

3. The hash code is encrypted with RSA using the sender's private key, and the result is

prepended to the message.

4. The receiver uses RSA with the sender's public key to decrypt and recover the hash code.

5. The receiver generates a new hash code for the message and compares it with the

decrypted hash code. If the two match, the message is accepted as authentic.

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 35

Figure 4. : PGP Cryptographic Functions

Confidentiality

Another basic service provided by PGP is confidentiality, which is provided by encrypting

messages to be transmitted or to be stored locally as files. In both cases, the symmetric

encryption algorithm CAST-128 may be used. Alternatively, IDEA or 3DES may be used. The

64-bit cipher feedback (CFB) mode is used. which can be described as follows:

1. The sender generates a message and a random 128-bit number to be used as a session

key for this message only.

2. The message is encrypted, using CAST-128 (or IDEA or 3DES) with the session key.

3. The session key is encrypted with RSA, using the recipient's public key, and is

prepended to the message.

4. The receiver uses RSA with its private key to decrypt and recover the session key.

5. The session key is used to decrypt the message.

Compression

As a default, PGP compresses the message after applying the signature but before encryption.

This has the benefit of saving space both for e-mail transmission and for file storage.

The placement of the compression algorithm, indicated by Z for compression and Z-1 for

decompression is critical:

1. The signature is generated before compression for two reasons:

a. It is preferable to sign an uncompressed message so that one can store only the

uncompressed message together with the signature for future verification. If one signed a

compressed document, then it would be necessary either to store a compressed version of the

message for later verification or to recompress the message when verification is required.

b. Even if one were willing to generate dynamically a recompressed message for verification,

PGP's compression algorithm presents a difficulty. The algorithm is not deterministic; various

implementations of the algorithm achieve different tradeoffs in running speed versus

compression ratio and, as a result, produce different compressed forms. However, these

different compression algorithms are interoperable because any version of the algorithm can

correctly decompress the output of any other version. Applying the hash function and

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 36

signature after compression would constrain all PGP implementations to the same version of

the compression algorithm.

2. Message encryption is applied after compression to strengthen cryptographic security.

Because the compressed message has less redundancy than the original plaintext, cryptanalysis

is more difficult.

E-mail Compatibility

When PGP is used, at least part of the block to be transmitted is encrypted. If only the signature

service is used, then the message digest is encrypted (with the sender's private key). If the

confidentiality service is used, the message plus signature (if present) are encrypted (with a

one-time symmetric key). Thus, part or all of the resulting block consists of a stream of arbitrary

8-bit octets. However, many electronic mail systems only permit the use of blocks consisting

of ASCII text. To accommodate this restriction, PGP provides the service of converting the

raw 8-bit binary stream to a stream of printable ASCII characters.

Figure 4. : Transmission and Reception of PGP Messages

4.8 S/MIME

S/MIME (Secure/Multipurpose Internet Mail Extension) is a security enhancement to the

MIME Internet email format standard, based on technology from RSA Data Security. Although

both PGP and S/MIME are on an IETF standards track, it appears likely that S/MIME will

emerge as the industry standard for commercial and organizational use, while PGP will remain

the choice for personal e-mail security for many users. S/MIME is defined in a number of

documents, most importantly RFCs 3369, 3370, 3850 and 3851.

To understand S/MIME, we need first to have a general understanding of the underlying

e-mail format that it uses, namely MIME. But to understand the significance of MIME, we

need to go back to the traditional e-mail format standard, RFC 822, which is still in common

use. Accordingly, this section first provides an introduction to these two earlier standards and

then moves on to a discussion of S/MIME.

Multipurpose Internet Mail Extensions

MIME is an extension to the RFC 822 framework that is intended to address some of the

problems and limitations of the use of SMTP (Simple Mail Transfer Protocol) or some other

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 37

mail transfer protocol and RFC 822 for electronic mail. [RODR02] lists the following

limitations of the SMTP/822 scheme:

1. SMTP cannot transmit executable files or other binary objects. A number of schemes

are in use for converting binary files into a text form that can be used by SMTP mail

systems, including the popular UNIX UUencode/UUdecode scheme. However, none of

these is a standard or even a de facto standard.

2. SMTP cannot transmit text data that includes national language characters because

these are represented by 8-bit codes with values of 128 decimal or higher, and SMTP

is limited to 7-bit ASCII.

3. SMTP servers may reject mail message over a certain size.

4. SMTP gateways that translate between ASCII and the character code EBCDIC do not

use a consistent set of mappings, resulting in translation problems.

5. SMTP gateways to X.400 electronic mail networks cannot handle nontextual data

included in X.400 messages.

6. Some SMTP implementations do not adhere completely to the SMTP standards

defined in RFC 821. Common problems include:

Deletion, addition, or reordering of carriage return and linefeed

Truncating or wrapping lines longer than 76 characters

Removal of trailing white space (tab and space characters)

Padding of lines in a message to the same length

Conversion of tab characters into multiple space characters

MIME is intended to resolve these problems in a manner that is compatible with existing

RFC 822 implementations. The specification is provided in RFCs 2045 through 2049.

Overview

The MIME specification includes the following elements:

1. Five new message header fields are defined, which may be included in an RFC 822

header. These fields provide information about the body of the message.

2. A number of content formats are defined, thus standardizing representations that

support multimedia electronic mail.

3. Transfer encodings are defined that enable the conversion of any content format into a

form that is protected from alteration by the mail system.

In this subsection, we introduce the five message header fields. The next two subsections deal

with content formats and transfer encodings.

The five header fields defined in MIME are as follows:

● MIME-Version: Must have the parameter value 1.0. This field indicates that the message

conforms to RFCs 2045 and 2046.

● Content-Type: Describes the data contained in the body with sufficient detail that the

receiving user agent can pick an appropriate agent or mechanism to represent the data to the

user or otherwise deal with the data in an appropriate manner.

● Content-Transfer-Encoding: Indicates the type of transformation that has been used to

represent the body of the message in a way that is acceptable for mail transport.

● Content-ID: Used to identify MIME entities uniquely in multiple contexts.

● Content-Description: A text description of the object with the body; this is useful when

the object is not readable (e.g., audio data).

Any or all of these fields may appear in a normal RFC 822 header. A compliant implementation

must support the MIME-Version, Content-Type, and Content-Transfer- Encoding fields; the

Content-ID and Content-Description fields are optional and may be ignored by the recipient

implementation.

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 38

MIME Content Types

The bulk of the MIME specification is concerned with the definition of a variety of content

types. This reflects the need to provide standardized ways of dealing with a wide variety of

information representations in a multimedia environment.

Below Table lists the content types specified in RFC 2046. There are seven different major

types of content and a total of 15 subtypes. In general, a content type declares the general

type of data, and the subtype specifies a particular format for that type of data.

MIME Transfer Encodings

The other major component of the MIME specification, in addition to content type

specification, is a definition of transfer encodings for message bodies. The objective is to

provide reliable delivery across the largest range of environments.

S/MIME Functionality

In terms of general functionality, S/MIME is very similar to PGP. Both offer the ability to sign

and/or encrypt messages. In this subsection, we briefly summarize S/MIME capability. We

then look in more detail at this capability by examining message formats and message

preparation.

Functions

S/MIME provides the following functions:

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 39

● Enveloped data: This consists of encrypted content of any type and encrypted-content

encryption keys for one or more recipients.

● Signed data: A digital signature is formed by taking the message digest of the content to

be signed and then encrypting that with the private key of the signer. The content plus signature

are then encoded using base64 encoding. A signed data message can only be viewed by a

recipient with S/MIME capability.

● Clear-signed data: As with signed data, a digital signature of the content is formed.

However, in this case, only the digital signature is encoded using base64. As a result, recipients

without S/MIME capability can view the message content, although they cannot verify the

signature.

● Signed and enveloped data: Signed-only and encrypted-only entities may be nested, so that

encrypted data may be signed and signed data or clear-signed data may be encrypted.

Cryptographic Algorithms

Cryptographic Algorithms Used in S/MIME

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 40

S/MIME Messages

S/MIME makes use of a number of new MIME content types, which are shown in Table. All

of the new application types use the designation PKCS. This refers to a set of public-key

cryptography specifications issued by RSA Laboratories and made available for the S/MIME

effort.

S/MIME Content Types

S/MIME Certificate Processing

S/MIME uses public-key certificates that conform to version 3 of X.509. The key management

scheme used by S/MIME is in some ways a hybrid between a strict X.509 certification

hierarchy and PGP's web of trust. As with the PGP model, S/MIME managers and/or users

must configure each client with a list of trusted keys and with certificate revocation lists. That

is, the responsibility is local for maintaining the certificates needed to verify incoming

signatures and to encrypt outgoing messages. On the other hand, the certificates are signed by

certification authorities.

User Agent Role

An S/MIME user has several key-management functions to perform:

● Key generation: The user of some related administrative utility (e.g., one associated with

LAN management) MUST be capable of generating separate Diffie-Hellman and DSS key

pairs and SHOULD be capable of generating RSA key pairs. Each key pair MUST be generated

from a good source of nondeterministic random input and be protected in a secure fashion. A

user agent SHOULD generate RSA key pairs with a length in the range of 768 to 1024 bits and

MUST NOT generate a length of less than 512 bits.

● Registration: A user's public key must be registered with a certification authority in order

to receive an X.509 public-key certificate.

● Certificate storage and retrieval: A user requires access to a local list of certificates in

order to verify incoming signatures and to encrypt outgoing messages. Such a list could be

maintained by the user or by some local administrative entity on behalf of a number of users.

VeriSign Certificates

There are several companies that provide certification authority (CA) services. For example,

Nortel has designed an enterprise CA solution and can provide S/MIME support within an

organization. There are a number of Internet-based CAs, including VeriSign, GTE, and the

U.S. Postal Service. Of these, the most widely used is the VeriSign CA service, a brief

description of which we now provide. VeriSign provides a CA service that is intended to be

compatible with S/MIME and a variety of other applications. VeriSign issues X.509 certificates

with the product name VeriSign Digital ID. As of early 1998, over 35,000 commercial Web

sites were using VeriSign Server Digital IDs, and over a million consumer Digital IDs had been

issued to users of Netscape and Microsoft browsers.

The information contained in a Digital ID depends on the type of Digital ID and its use. At a

minimum, each Digital ID contains

● Owner's public key

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 41

● Owner's name or alias

● Expiration date of the Digital ID

● Serial number of the Digital ID

● Name of the certification authority that issued the Digital ID

● Digital signature of the certification authority that issued the Digital ID

Digital IDs can also contain other user-supplied information, including

● Address

● E-mail address

● Basic registration information (country, zip code, age, and gender)

VeriSign provides three levels, or classes, of security for public-key certificates, as summarized

in Table . A user requests a certificate online at VeriSign's Web site or other participating Web

sites. Class 1 and Class 2 requests are processed on line, and in most cases take only a few

seconds to approve.

Briefly, the following procedures are used:

● For Class 1 Digital IDs, VeriSign confirms the user's e-mail address by sending a PIN and

Digital ID pick-up information to the e-mail address provided in the application.

● For Class 2 Digital IDs, VeriSign verifies the information in the application through an

automated comparison with a consumer database in addition to performing all of the checking

associated with a Class 1 Digital ID. Finally, confirmation is sent to the specified postal address

alerting the user that a Digital ID has been issued in his or her name.

● For Class 3 Digital IDs, VeriSign requires a higher level of identity assurance. An individual

must prove his or her identity by providing notarized credentials or applying in person.

VeriSign Public-Key Certificate Classes

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 42

Enhanced Security Services

As of this writing, three enhanced security services have been proposed in an Internet draft.

The details of these may change, and additional services may be added. The three services are

as follows:

● Signed receipts: A signed receipt may be requested in a SignedData object. Returning a

signed receipt provides proof of delivery to the originator of a message and allows the

originator to demonstrate to a third party that the recipient received the message. In essence,

the recipient signs the entire original message plus original (sender's) signature and appends

the new signature to form a new S/MIME message.

● Security labels: A security label may be included in the authenticated attributes of a

SignedData object. A security label is a set of security information regarding the sensitivity

of the content that is protected by S/MIME encapsulation. The labels may be used for access

control, by indicating which users are permitted access to an object. Other uses include priority

(secret, confidential, restricted, and so on) or role based, describing which kind of people can

see the information (e.g., patient's health-care team, medical billing agents, etc.).

● Secure mailing lists: When a user sends a message to multiple recipients, a certain amount

of per-recipient processing is required, including the use of each recipient's public key. The

user can be relieved of this work by employing the services of an S/MIME Mail List Agent

(MLA). An MLA can take a single incoming message, perform the recipient-specific

encryption for each recipient, and forward the message. The originator of a message need

only send the message to the MLA, with encryption performed using the MLA's public key.

Domain Keys Identified Mail

➢ a specification for cryptographically signing email messages

➢ so signing domain claims responsibility

➢ recipients / agents can verify signature

➢ proposed Internet Standard RFC 4871

➢ has been widely adopted

Internet Mail Architecture

Cryptography Module-4

 Prepared by Divyashree H S Dept. Of CSE, BrCE 43

Email Threats

➢ describes the problem space in terms of:

⚫ range: low end, spammers, fraudsters

⚫ capabilities in terms of where submitted, signed, volume, routing naming etc

⚫ outside located attackers

DKIM Strategy

➢ transparent to user

⚫ MSA sign

⚫ MDA verify

➢ for pragmatic reasons

DCIM Functional Flow

Cryptography Module-5

 Prepared by Divyashree H S Dept. Of CSE, BrCE 1

Module-5:

IP SECURITY

Key Points
➢ IP security (IPSec) is a capability that can be added to either current version of the

Internet Protocol (IPv4 or IPv6), by means of additional headers.

➢ IPSec encompasses three functional areas: authentication, confidentiality, and key

management.

➢ Authentication makes use of the HMAC message authentication code. Authentication

can be applied to the entire original IP packet (tunnel mode) or to all of the packet

except for the IP header (transport mode).

➢ Confidentiality is provided by an encryption format known as encapsulating security

payload. Both tunnel and transport modes can be accommodated.

➢ IPSec defines a number of techniques for key management.

The Internet community has developed application-specific security mechanisms in a number

of application areas, including electronic mail (S/MIME, PGP), client/server (Kerberos), Web

access (Secure Sockets Layer), and others. However, users have some security concerns that

cut across protocol layers.

For example, an enterprise can run a secure, private TCP/IP network by disallowing links to

untrusted sites, encrypting packets that leave the premises, and authenticating packets that enter

the premises.

By implementing security at the IP level, an organization can ensure secure networking

not only for applications that have security mechanisms but also for the many security-ignorant

applications.

IP-level security encompasses three functional areas: authentication,

confidentiality, and key management. The authentication mechanism assures that a received

packet was, in fact, transmitted by the party identified as the source in the packet header. In

addition, this mechanism assures that the packet has not been altered in transit. The

confidentiality facility enables communicating nodes to encrypt messages to prevent

eavesdropping by third parties. The key management facility is concerned with the secure

exchange of keys.

5.1 IP Security Overview
In 1994, the Internet Architecture Board(IAB) issued a report titled “ Security in the Internet

Architecture”(RFC 1636). The report identified key areas for security mechanisms. Among

these were the need to secure the network infrastructure from unauthorized monitoring and

control of network traffic and the need to secure end-user-to-end-user traffic using

authentication and encryption mechanism.

To provide security, the IAB included authentication and encryption as necessary

features in the next generation IP, which has been issued as IPv6. Fortunately, these security

capabilities were designed to be usable both with the current IPv4 and the future IPv6. This

means that vendors can begin offering these features now, and many vendors do now have

some IPSec capability in their products.

Cryptography Module-5

 Prepared by Divyashree H S Dept. Of CSE, BrCE 2

5.1.1 Applications of IPSec
IPSec provides the capability to secure communications across a LAN, across private and

public WANs, and across the Internet. Examples of its use include the following:

● Secure branch office connectivity over the Internet: A company can build a secure virtual

private network over the Internet or over a public WAN. This enables a business to rely heavily

on the Internet and reduce its need for private networks, saving costs and network management

overhead.

● Secure remote access over the Internet: An end user whose system is equipped with IP

security protocols can make a local call to an Internet service provider (ISP) and gain secure

access to a company network. This reduces the cost of toll charges for traveling employees and

telecommuters.

● Establishing extranet and intranet connectivity with partners: IPSec can be used to

secure communication with other organizations, ensuring authentication and confidentiality

and providing a key exchange mechanism.

● Enhancing electronic commerce security: Even though some Web and electronic

commerce applications have built-in security protocols, the use of IPSec enhances that security.

The principal feature of IPSec that enables it to support these varied applications is that

it can encrypt and/or authenticate all traffic at the IP level. Thus, all distributed applications,

including remote logon, client/server, e-mail, file transfer, Web access, and so on, can be

secured.

Figure 5.1: An IPSec VPN Scenario

Cryptography Module-5

 Prepared by Divyashree H S Dept. Of CSE, BrCE 3

Figure 5.1a shows a simplified packet format for an IPSec option known as tunnel mode,

described subsequently. Tunnel mode makes use of an IPSec function, a combined

authentication/encryption function called Encapsulating Security Payload (ESP), and a key

exchange function. For VPNs, both authentication and encryption are generally desired,

because it is important both to

1. Assure that unauthorized users do not penetrate the VPN.

2. Assure that eavesdroppers on the Internet cannot read messages sent over the VPN.

Figure 5.1b is a typical scenario of IPSec usage. An organization maintains LANs at

dispersed locations. Nonsecure IP traffic is conducted on each LAN. For traffic offsite, through

some sort of private or public WAN, IPSec protocols are used. These protocols operate in

networking devices, such as a router or firewall, that connect each LAN to the outside world.

The IPSec networking device will typically encrypt and compress all traffic going into the

WAN, and decrypt and decompress traffic coming from the WAN; these operations are

transparent to workstations and servers on the LAN. Secure transmission is also possible

with individual users who dial into the WAN. Such user workstations must implement the

IPSec protocols to provide security.

5.1.2 Benefits of IPSec
➢ When IPSec is implemented in a firewall or router, it provides strong security that can

be applied to all traffic crossing the perimeter. Traffic within a company or workgroup

does not incur the overhead of security-related processing.

➢ IPSec in a firewall is resistant to bypass if all traffic from the outside must use IP, and

the firewall is the only means of entrance from the Internet into the organization.

➢ IPSec is below the transport layer (TCP, UDP) and so is transparent to applications.

There is no need to change software on a user or server system when IPSec is

implemented in the firewall or router. Even if IPSec is implemented in end systems,

upper-layer software, including applications, is not affected.

➢ IPSec can be transparent to end users. There is no need to train users on security

mechanisms, issue keying material on a per-user basis, or revoke keying material

when users leave the organization.

➢ IPSec can provide security for individual users if needed. This is useful for offsite

workers and for setting up a secure virtual subnetwork within an organization for

sensitive applications.

5.1.3 Routing Applications
In addition to supporting end users and protecting premises systems and networks, IPSec can

play a vital role in the routing architecture required for internetworking. IPSec can assure that

● A router advertisement (a new router advertises its presence) comes from an authorized

router

● A neighbor advertisement (a router seeks to establish or maintain a neighbor relationship

with a router in another routing domain) comes from an authorized router.

● A redirect message comes from the router to which the initial packet was sent.

● A routing update is not forged.

Without such security measures, an opponent can disrupt communications or divert some

traffic. Routing protocols such as OSPF should be run on top of security associations between

routers that are defined by IPSec.

Cryptography Module-5

 Prepared by Divyashree H S Dept. Of CSE, BrCE 4

5.1.4 IPSec Documents
The IPSec specification consists of numerous documents. The most important of these, issued

in November of 1998, are RFCs 2401, 2402, 2406, and 2408:

● RFC 2401: An overview of a security architecture

● RFC 2402: Description of a packet authentication extension to IPv4 and IPv6

● RFC 2406: Description of a packet encryption extension to IPv4 and IPv6

● RFC 2408: Specification of key management capabilities

Support for these features is mandatory for IPv6 and optional for IPv4. In both cases, the

security features are implemented as extension headers that follow the main IP header. The

extension header for authentication is known as the Authentication header; that for encryption

is known as the Encapsulating Security Payload (ESP) header.

In addition to these four RFCs, a number of additional drafts have been published by

the IP Security Protocol Working Group set up by the IETF. The documents are divided into

seven groups, as depicted in Figure 5.2 (RFC 2401):

Figure 5.2: IPSec Document Overview

• Architecture: Covers the general concepts, security requirements, definitions, and

mechanisms defining IPSec technology.

• Encapsulating Security Payload (ESP): Covers the packet format and general issues

related to the use of the ESP for packet encryption and, optionally, authentication.

• Authentication Header (AH): Covers the packet format and general issues related to
the use of AH for packet authentication.

Cryptography Module-5

 Prepared by Divyashree H S Dept. Of CSE, BrCE 5

• Encryption Algorithm: A set of documents that describe how various encryption

algorithms are used for ESP.

• Authentication Algorithm: A set of documents that describe how various
authentication algorithms are used for AH and for the authentication option of ESP.

• Key Management: Documents that describe key management schemes.

• Domain of Interpretation (DOI): Contains values needed for the other documents to

relate to each other. These include identifiers for approved encryption and

authentication algorithms, as well as operational parameters such as key lifetime.

• Internet Key Exchange(IKE): this is a collection of documents describing the key

management schemes for use with IPSec. The main specification is RFC 7296, Internet
Key Exchange(IKEv2) protocol, but there are a number of related RFCs.

• Cryptography algorithms: this categories encompasses a large set of documents that

define and describe cryptographic algorithms for encryption, message authentication,

pseudorandom function(PRFs), and cryptographic key exchange.

• Other: there are a variety of other IPSec related RFCs including those dealing with

security policy and management information base (MIB) content.

5.1.5 IPSec Services

IPSec provides security services at the IP layer by enabling a system to select required security

protocols, determine the algorithm(s) to use for the service(s), and put in place any

cryptographic keys required to provide the requested services. Two protocols are used to

provide security: an authentication protocol designated by the header of the protocol,

Authentication Header (AH); and a combined encryption/authentication protocol designated

by the format of the packet for that protocol, Encapsulating Security Payload (ESP). The

services are

● Access control

● Connectionless integrity

● Data origin authentication

● Rejection of replayed packets (a form of partial sequence integrity)

● Confidentiality (encryption)

● Limited traffic flow confidentiality

Table 5.1 shows which services are provided by the AH and ESP protocols. For ESP, there

are two cases: with and without the authentication option. Both AH and ESP are vehicles for

access control, based on the distribution of cryptographic keys and the management of traffic

flows relative to these security protocols.

Table 5.1: IPSec Services

Cryptography Module-5

 Prepared by Divyashree H S Dept. Of CSE, BrCE 6

5.1.6 Transport and Tunnel Modes
Both AH and ESP support two modes of use: transport and tunnel mode. The operation of these

two modes is best understood in the context of a description of AH and ESP, respectively. Here

we provide a brief overview.

Transport Mode

Transport mode provides protection primarily for upper-layer protocols. That is, transport

mode protection extends to the payload of an IP packet. Examples include a TCP or UDP

segment or an ICMP packet, all of which operate directly above IP in a host protocol stack.

Typically, transport mode is used for end-to-end communication between two hosts (e.g., a

client and a server, or two workstations). When a host runs AH or ESP over IPv4, the payload

is the data that normally follow the IP header. For IPv6, the payload is the data that normally

follow both the IP header and any IPv6 extensions headers that are present, with the possible

exception of the destination options header, which may be included in the protection.

ESP in transport mode encrypts and optionally authenticates the IP payload but not

the IP header. AH in transport mode authenticates the IP payload and selected portions of the

IP header.

Tunnel Mode

Tunnel mode provides protection to the entire IP packet. To achieve this, after the AH or ESP

fields are added to the IP packet, the entire packet plus security fields is treated as the payload

of new "outer" IP packet with a new outer IP header. The entire original, or inner, packet travels

through a "tunnel" from one point of an IP network to another; no routers along the way are

able to examine the inner IP header. Because the original packet is encapsulated, the new, larger

packet may have totally different source and destination addresses, adding to the security.

Tunnel mode is used when one or both ends of an SA are a security gateway, such as a firewall

or router that implements IPSec. With tunnel mode, a number of hosts on networks behind

firewalls may engage in secure communications without implementing IPSec. The unprotected

packets generated by such hosts are tunneled through external networks by tunnel mode SAs

set up by the IPSec software in the firewall or secure router at the boundary of the local network.

Here is an example of how tunnel mode IPSec operates. Host A on a network generates

an IP packet with the destination address of host B on another network. This packet is routed

from the originating host to a firewall or secure router at the boundary of A's network. The

firewall filters all outgoing packets to determine the need for IPSec processing. If this packet

from A to B requires IPSec, the firewall performs IPSec processing and encapsulates the packet

with an outer IP header. The source IP address of this outer IP packet is this firewall, and the

destination address may be a firewall that forms the boundary to B's local network. This packet

is now routed to B's firewall, with intermediate routers examining only the outer IP header. At

B's firewall, the outer IP header is stripped off, and the inner packet is delivered to B.

ESP in tunnel mode encrypts and optionally authenticates the entire inner IP packet,

including the inner IP header. AH in tunnel mode authenticates the entire inner IP packet and

selected portions of the outer IP header.

Cryptography Module-5

 Prepared by Divyashree H S Dept. Of CSE, BrCE 7

Table 5.2: summarizes transport and tunnel mode functionality.

5.2 IP Security Policy
Fundamental to the operation of IPSec is the concept of a security policy applied to each IP

packet that transmit from a source to a destination. IPsec policy is determined primarily by the

interaction of two databases, the security association database (SAD) and the security policy

database (SPD).

5.2.1 Security Associations
A key concept that appears in both the authentication and confidentiality mechanisms for IP

is the security association (SA). An association is a one-way relationship between a sender and

a receiver that affords security services to the traffic carried on it. If a peer relationship is

needed, for two-way secure exchange, then two security associations are required. Security

services are afforded to an SA for the use of AH or ESP, but not both.

A security association is uniquely identified by three parameters:

● Security Parameters Index (SPI): A bit string assigned to this SA and having local

significance only. The SPI is carried in AH and ESP headers to enable the receiving system

to select the SA under which a received packet will be processed.

● IP Destination Address: Currently, only unicast addresses are allowed; this is the address

of the destination endpoint of the SA, which may be an end user system or a network system

such as a firewall or router.

● Security Protocol Identifier: This indicates whether the association is an AH or ESP

security association.

Hence, in any IP packet, the security association is uniquely identified by the

Destination Address in the IPv4 or IPv6 header and the SPI in the enclosed extension header

(AH or ESP).

Figure 5.3 illustrates the relevant relationships.

Figure 5.3: IPSec Architecture

Cryptography Module-5

 Prepared by Divyashree H S Dept. Of CSE, BrCE 8

5.2.2 Security Association Database
In each IPSec implementation, there is a nominal Security Association Database that defines

the parameters associated with each SA. A security association is normally defined by the

following parameters in an SAD entry:

• Security Parameter Index: A 32 bit value selected by the receiving end of an SA to

uniquely identify the SA. In an SAD entry for an outbound SA, the SPI is used to

construct the packet’s AH or ESP header. In an SAD entry for an inbound SA, the SPI

is used to map traffic to the appropriate SA.

• Sequence Number Counter: A 32-bit value used to generate the Sequence Number

field in AH or ESP headers.

• Sequence Counter Overflow: A flag indicating whether overflow of the Sequence

Number Counter should generate an auditable event and prevent further transmission

of packets on this SA.

• Anti-Replay Window: Used to determine whether an inbound AH or ESP packet is a

replay.

• AH Information: Authentication algorithm, keys, key lifetimes, and related
parameters being used with AH.

• ESP Information: Encryption and authentication algorithm, keys, initialization values,

key lifetimes, and related parameters being used with ESP.

• Lifetime of This Security Association: A time interval or byte count after which an
SA must be replaced with a new SA (and new SPI) or terminated, plus an indication

of which of these actions should occur.

• IPsec Protocol Mode: Tunnel, transport, or wildcard

• Path MTU: any observed path maximum transmission unit and aging variables.
The key management mechanism that is used to distribute keys is coupled to the

authentication and privacy mechanisms only by way of the Security Parameters Index. Hence,

authentication and privacy have been specified independent of any specific key management

mechanism.

IPSec provides the user with considerable flexibility in the way in which IPSec services are

applied to IP traffic.SAs can be combined in a number of ways to yield the desired user

configuration. Furthermore, IPSec provides a high degree of granularity in discriminating

between traffic that is afforded IPSec protection and traffic that is allowed to bypass IPSec, in

the former case relating IP traffic to specific SAs.

5.2.3 Security Policy Database
The means by which IP traffic is related to specific SAs (or no SA in the case of traffic allowed

to bypass IPSec) is the nominal Security Policy Database (SPD). In its simplest form, an SPD

contains entries, each of which defines a subset of IP traffic and points to an SA for that traffic.

In more complex environments, there may be multiple entries that potentially relate to a single

SA or multiple SAs associated with a single SPD entry. The reader is referred to the relevant

IPSec documents for a full discussion.

Each SPD entry is defined by a set of IP and upper-layer protocol field values, called

selectors. In effect, these selectors are used to filter outgoing traffic in order to map it into a

particular SA. Outbound processing obeys the following general sequence for each IP packet:

1. Compare the values of the appropriate fields in the packet (the selector fields) against

the SPD to find a matching SPD entry, which will point to zero or more SAs.

2. Determine the SA if any for this packet and its associated SPI.

3. Do the required IPSec processing (i.e., AH or ESP processing).

Cryptography Module-5

 Prepared by Divyashree H S Dept. Of CSE, BrCE 9

The following selectors determine an SPD entry:

Remote IP Address: This may be a single IP address, an enumerated list or range of addresses,

or a wildcard (mask) address. The latter two are required to support more than one destination

system sharing the same SA (e.g., behind a firewall).

Local IP Address: This may be a single IP address, an enumerated list or range of addresses,

or a wildcard (mask) address. The latter two are required to support more than one source

system sharing the same SA (e.g., behind a firewall).

Next Layer Protocol: The IP protocol header includes a field that designates the protocol

operating over IP. This is an individual protocol number, ANY, or for IPv6 only, OPAQUE.

If AH or ESP is used, then this IP protocol header immediately precedes the AH or ESP header

in the packet.

Name: a user identifies from the operating system. This is not a field in the IP or upper-layer

headers but is available if IPsec is running on the same operating system as the user.

Local and Remote Ports: These may be individual TCP or UDP port values, an enumerated

list of ports, or a wildcard port.

5.2.4 IP traffic processing
IPsec is executed on a packet-by-packet basis. When IPSec is implemented, each outbound IP

packet is processed by the IPsec logic before transmission, and each inbound packet

isprocessed by the IPsec logic after reception and before passing the packet contents on to the

next higher layer. We look at the logic of these two situations in turn.

Outbound packets: Figure 5.4 highlights the main elements of IPsec processing for outbound

traffic. A block of data from a higher layer, such as TCP, is passed down to the IP layer and an

IP packet is formed, consisting of an IP header and an IP body. Then the following steps occur:

1. IPsec searches the SPD for a match to this packet.

2. If no match is found, then the packet is discarded and an error message is generated.

3. If a match is found, further processing is determined by the first matching entry in the

SPD. If the policy for this packet is DISCARD, then the packet is discarded. If the

policy is BYPASS, then there is no further IPsec processing; the packet is forwarded to

the network for transmission.

4. If the policy is PROTECH, then a search is made of the SAD for a matching entry. If

no entry is found, then IKE is invoked to create an SA with the appropriate keys and an

entry is made in the SA.

5. The matching entry in the SAD determines the processing for this packet. Either

encryption, authentication, or both can be performed, and either transport or tunnel

mode can be used. The packet is then forwarded to the network for transmission.

Cryptography Module-5

 Prepared by Divyashree H S Dept. Of CSE, BrCE 10

Figure 5.4: Processing Model for Outbound Packets

Inbound packets: Figure 5.5 highlights the main elements of IPsec processing for inbound

traffic. An incoming IP packet triggers the IPsec processing. The following steps occur:

1. IPsec determines whether this is an unsecured IP packet or one that has ESP or AH

headers/trailers, by examining the IP protocol field (IPv4) or Next header field (IPv6).

2. If the packet is unsecured, IPsec searches the SPD for a match to this packet. If the first

matching entry has a policy of BYPASS, the IP header is processed and stripped off

and the packet body is delivered to the next higher layer, such as TCP. If the first

matching entry has a policy of PROTECT or DISCARD, or if there is no matching

entry, the packet is discarded.

3. For a secured packet, IPsec searches the SAD. If no match is found, the packet is

discarded. Otherwise, IPsec applies the appropriate ESP or AH processing. Then, the

IP header is processed and stripped off and the packet body is delivered to the next

higher layer, such as TCP.

Cryptography Module-5

 Prepared by Divyashree H S Dept. Of CSE, BrCE 11

Figure 5.5: Processing Model for inbound packets

5.3 Encapsulating Security Payload
The Encapsulating Security Payload provides confidentiality services, including

confidentiality of message contents and limited traffic flow confidentiality. As an optional

feature, ESP can also provide an authentication service.

Figure 5.6: ESP Packet format

Cryptography Module-5

 Prepared by Divyashree H S Dept. Of CSE, BrCE 12

5.3.1 ESP Format
Figure 5.6a shows the top-level format of an ESP packet. It contains the following fields.

Security Parameters Index (32 bits): Identifies a security association.

Sequence Number (32 bits): A monotonically increasing counter value; this provides an

anti-replay function, as discussed for AH.

Payload Data (variable): This is a transport-level segment (transport mode) or IP packet

(tunnel mode) that is protected by encryption.
Padding (0255 bytes): The purpose of this field is discussed later.

Pad Length (8 bits): Indicates the number of pad bytes immediately preceding this field.

Next Header (8 bits): Identifies the type of data contained in the payload data field by

identifying the first header in that payload (for example, an extension header in IPv6, or an

upper-layer protocol such as TCP).

Integrity Check Value (variable): A variable-length field (must be an integral number of 32-

bit words) that contains the Integrity Check Value computed over the ESP packet minus the

Authentication Data field.

Two additional fields may be present in the payload as in figure 5.6b. an initialization value

(IV) or nonce is present if this is required by the encryption or authentication encryption

algorithm used for ESP. if tunnel mode is being used, then the IPsec implementation may add

traffic flow confidentiality (TFC) padding after payload data and before the padding field.

5.3.2 Encryption and Authentication Algorithms
The Payload Data, Padding, Pad Length, and Next Header fields are encrypted by the ESP

service. If the algorithm used to encrypt the payload requires cryptographic synchronization

data, such as an initialization vector (IV), then these data may be carried explicitly at the

beginning of the Payload Data field. If included, an IV is usually not encrypted, although it is

often referred to as being part of the ciphertext.

The ICV field is optional. It is present only if the integrity service is selected and is

provided by either a separate integrity algorithm or a encryption mode algorithm that uses an

ICV. The ICV is computed after the encryption is performed. This order of processing

facilitates rapid detection and rejection of replayed or bogus packets by the receiver prior to

decrypting the packets, hence potentially reducing the impact of denial of service (DoS)

attacks. It also allows for the possibility of parallel processing of packets at the receiver that

is decryption can take place in parallel with integrity checking. Note that because the ICV is

not protected by encryption, a keyed integrity algorithm must be employed to compute the ICV.

5.3.3 Padding
The Padding field serves several purposes:

● If an encryption algorithm requires the plaintext to be a multiple of some number of bytes

(e.g., the multiple of a single block for a block cipher), the Padding field is used to expand the

plaintext (consisting of the Payload Data, Padding, Pad Length, and Next Header fields) to the

required length.

● The ESP format requires that the Pad Length and Next Header fields be right aligned within

a 32- bit word. Equivalently, the ciphertext must be an integer multiple of 32 bits. The Padding

field is used to assure this alignment.

● Additional padding may be added to provide partial traffic flow confidentiality by

concealing the actual length of the payload.

Cryptography Module-5

 Prepared by Divyashree H S Dept. Of CSE, BrCE 13

5.3.4 Anti-Replay Service
A replay attack is one in which an attacker obtains a copy of an authenticated packet and later

transmits it to the intended destination. The receipt of duplicate, authenticated IP packets may

disrupt service in some way or may have some other undesired consequence. The Sequence

Number field is designed to thwart such attacks. First, we discuss sequence number generation

by the sender, and then we look at how it is processed by the recipient.

When a new SA is established, the sender initializes a sequence number counter to 0.

Each time that a packet is sent on this SA, the sender increments the counter and places the

value in the Sequence Number field. Thus, the first value to be used is 1. If anti-replay is

enabled (the default), the sender must not allow the sequence number to cycle past 232 - 1 back

to zero. Otherwise, there would be multiple valid packets with the same sequence number. If

the limit of 232 - 1 is reached, the sender should terminate this SA and negotiate a new SA with

a new key.

Because IP is a connectionless, unreliable service, the protocol does not guarantee that

packets will be delivered in order and does not guarantee that all packets will be delivered.

Therefore, the IPSec authentication document dictates that the receiver should implement a

window of size W, with a default of W = 64. The right edge of the window represents the highest

sequence number, N, so far received for a valid packet. For any packet with a sequence number

in the range from N W + 1 to N that has been correctly received (i.e., properly authenticated),

the corresponding slot in the window is marked (Figure 5.7). Inbound processing proceeds as

follows when a packet is received:

1. If the received packet falls within the window and is new, the MAC is checked. If the

packet is authenticated, the corresponding slot in the window is marked.

2. If the received packet is to the right of the window and is new, the MAC is checked. If

the packet is authenticated, the window is advanced so that this sequence number is the

right edge of the window, and the corresponding slot in the window is marked.

3. If the received packet is to the left of the window, or if authentication fails, the packet

is discarded; this is an auditable event.

Figure 5.7: Anti-replay mechanism

5.3.5 Transport and Tunnel Modes
Figure 5.8 shows two ways in which the IPSec ESP service can be used. In the upper part of

the figure, encryption (and optionally authentication) is provided directly between two hosts.

Figure 5.8b shows how tunnel mode operation can be used to set up a virtual private network.

In this example, an organization has four private networks interconnected across the Internet.

Hosts on the internal networks use the Internet for transport of data but do not interact with

other Internet-based hosts. By terminating the tunnels at the security gateway to each internal

network, the configuration allows the hosts to avoid implementing the security capability.

Cryptography Module-5

 Prepared by Divyashree H S Dept. Of CSE, BrCE 14

The former technique is support by a transport mode SA, while the latter technique uses a

tunnel mode SA.

Figure 5.8: Transport-Mode versus Tunnel-Mode Encryption

Transport Mode ESP

Transport mode ESP is used to encrypt and optionally authenticate the data carried by IP (e.g.,

a TCP segment), as shown in Figure 5.9a. For this mode using IPv4, the ESP header is inserted

into the IP packet immediately prior to the transport-layer header (e.g., TCP, UDP, ICMP) and

an ESP trailer (Padding, Pad Length, and Next Header fields) is placed after the IP packet; if

authentication is selected, the ESP Authentication Data field is added after the ESP trailer. The

entire transport-level segment plus the ESP trailer are encrypted. Authentication covers all of

the ciphertext plus the ESP header.

In the context of IPv6, ESP is viewed as an end-to-end payload; that is, it is not

examined or processed by intermediate routers. Therefore, the ESP header appears after the

IPv6 base header and the hop-by hop, routing, and fragment extension headers. The destination

options extension header could appear before or after the ESP header, depending on the

semantics desired. For IPv6, encryption covers the entire transport-level segment plus the ESP

trailer plus the destination options extension header if it occurs after the ESP header. Again,

authentication covers the ciphertext plus the ESP header.

Cryptography Module-5

 Prepared by Divyashree H S Dept. Of CSE, BrCE 15

Figure 5.9: Scope of ESP encryption and authentication

Transport mode operation may be summarized as follows:

1. At the source, the block of data consisting of the ESP trailer plus the entire transport-

layer segment is encrypted and the plaintext of this block is replaced with its ciphertext

to form the IP packet for transmission. Authentication is added if this option is selected.

2. The packet is then routed to the destination. Each intermediate router needs to examine

and process the IP header plus any plaintext IP extension headers but does not need to

examine the ciphertext.

3. The destination node examines and processes the IP header plus any plaintext IP

extension headers. Then, on the basis of the SPI in the ESP header, the destination node

decrypts the remainder of the packet to recover the plaintext transport-layer segment.

Transport mode operation provides confidentiality for any application that uses it, thus avoiding

the need to implement confidentiality in every individual application. This mode of operation

is also reasonably efficient, adding little to the total length of the IP packet. One drawback to

this mode is that it is possible to do traffic analysis on the transmitted packets.

Tunnel Mode ESP

Tunnel mode ESP is used to encrypt an entire IP packet (Figure 5.9b). For this mode, the ESP

header is prefixed to the packet and then the packet plus the ESP trailer is encrypted. This

method can be used to counter traffic analysis.

Because the IP header contains the destination address and possibly source routing

directives and hopby- hop option information, it is not possible simply to transmit the encrypted

IP packet prefixed by the ESP header. Intermediate routers would be unable to process such a

packet. Therefore, it is necessary to encapsulate the entire block (ESP header

Cryptography Module-5

 Prepared by Divyashree H S Dept. Of CSE, BrCE 16

plus ciphertext plus Authentication Data, if present) with a new IP header that will contain

sufficient information for routing but not for traffic analysis.

Whereas the transport mode is suitable for protecting connections between hosts that

support the ESP feature, the tunnel mode is useful in a configuration that includes a firewall

or other sort of security gateway that protects a trusted network from external networks. In this

latter case, encryption occurs only between an external host and the security gateway or

between two security gateways. This relieves hosts on the internal network of the processing

burden of encryption and simplifies the key distribution task by reducing the number of needed

keys. Further, it thwarts traffic analysis based on ultimate destination.

Consider a case in which an external host wishes to communicate with a host on an

internal network protected by a firewall, and in which ESP is implemented in the external

host and the firewalls. The following steps occur for transfer of a transport-layer segment from

the external host to the internal host:

1. The source prepares an inner IP packet with a destination address of the target internal

host. This packet is prefixed by an ESP header; then the packet and ESP trailer are

encrypted and Authentication Data may be added. The resulting block is encapsulated

with a new IP header (base header plus optional extensions such as routing and hop-

by-hop options for IPv6) whose destination address is the firewall; this forms the outer

IP packet.

2. The outer packet is routed to the destination firewall. Each intermediate router needs to

examine and process the outer IP header plus any outer IP extension headers but does

not need to examine the ciphertext.

3. The destination firewall examines and processes the outer IP header plus any outer IP

extension headers. Then, on the basis of the SPI in the ESP header, the destination node

decrypts the remainder of the packet to recover the plaintext inner IP packet. This

packet is then transmitted in the internal network.

4. The inner packet is routed through zero or more routers in the internal network to the

destination host.

Figure 5.10: Protocol Operation for ESP

Cryptography Module-5

 Prepared by Divyashree H S Dept. Of CSE, BrCE 17

5.4 Combining Security Associations
An individual SA can implement either the AH or ESP protocol but not both. Sometimes a

particular traffic flow will call for the services provided by both AH and ESP. Further, a

particular traffic flow may require IPSec services between hosts and, for that same flow,

separate services between security gateways, such as firewalls. In all of these cases, multiple

SAs must be employed for the same traffic flow to achieve the desired IPSec services. The term

security association bundle refers to a sequence of SAs through which traffic must be processed

to provide a desired set of IPSec services. The SAs in a bundle may terminate at different

endpoints or at the same endpoints.

Security associations may be combined into bundles in two ways:

● Transport adjacency: Refers to applying more than one security protocol to the same IP

packet, without invoking tunneling. This approach to combining AH and ESP allows for only

one level of combination; further nesting yields no added benefit since the processing is

performed at one IPsec instance: the (ultimate) destination.

● Iterated tunneling: Refers to the application of multiple layers of security protocols

effected through IP tunneling. This approach allows for multiple levels of nesting, since each

tunnel can originate or terminate at a different IPsec site along the path.

The two approaches can be combined, for example, by having a transport SA between

hosts travel part of the way through a tunnel SA between security gateways. One interesting

issue that arises when considering SA bundles is the order in which authentication and

encryption may be applied between a given pair of endpoints and the ways of doing so. We

examine that issue next. Then we look at combinations of SAs that involve at least one tunnel.

5.4.1 Authentication Plus Confidentiality

Encryption and authentication can be combined in order to transmit an IP packet that has both

confidentiality and authentication between hosts. We look at several approaches.

ESP with Authentication Option

This approach is illustrated in Figure 5.9. In this approach, the user first applies ESP to the data

to be protected and then appends the authentication data field. There are actually two subcases:

● Transport mode ESP: Authentication and encryption apply to the IP payload delivered to

the host, but the IP header is not protected.

● Tunnel mode ESP: Authentication applies to the entire IP packet delivered to the outer IP

destination address (e.g., a firewall), and authentication is performed at that destination. The

entire inner IP packet is protected by the privacy mechanism, for delivery to the inner IP

destination.

For both cases, authentication applies to the ciphertext rather than the plaintext.

Transport Adjacency

Another way to apply authentication after encryption is to use two bundled transport SAs, with

the inner being an ESP SA and the outer being an AH SA. In this case ESP is used without its

authentication option. Because the inner SA is a transport SA, encryption is applied to the IP

payload. The resulting packet consists of an IP header (and possibly IPv6 header extensions)

followed by an ESP. AH is then applied in transport mode, so that authentication covers the

ESP plus the original IP header (and extensions) except for mutable fields. The advantage of

this approach over simply using a single ESP SA with the ESP authentication option is that the

authentication covers more fields, including the source and destination IP addresses. The

disadvantage is the overhead of two SAs versus one SA.

Cryptography Module-5

 Prepared by Divyashree H S Dept. Of CSE, BrCE 18

Transport-Tunnel Bundle

The use of authentication prior to encryption might be preferable for several reasons. First,

because the authentication data are protected by encryption, it is impossible for anyone to

intercept the message and alter the authentication data without detection. Second, it may be

desirable to store the authentication information with the message at the destination for later

reference. It is more convenient to do this if the authentication information applies to the

unencrypted message; otherwise the message would have to be reencrypted to verify the

authentication information.

One approach to applying authentication before encryption between two hosts is to use

a bundle consisting of an inner AH transport SA and an outer ESP tunnel SA. In this case,

authentication is applied to the IP payload plus the IP header (and extensions) except for

mutable fields. The resulting IP packet is then processed in tunnel mode by ESP; the result is

that the entire, authenticated inner packet is encrypted and a new outer IP header (and

extensions) is added.

5.4.2 Basic Combinations of Security Associations
The IPSec Architecture document lists four examples of combinations of SAs that must be

supported by compliant IPSec hosts (e.g., workstation, server) or security gateways (e.g.

firewall, router). These are illustrated in Figure 5.11. The lower part of each case in the figure

represents the physical connectivity of the elements; the upper part represents logical

connectivity via one or more nested SAs. Each SA can be either AH or ESP. For host-to-host

SAs, the mode may be either transport or tunnel; otherwise it must be tunnel mode.

Figure 5.11: Basic Combinations of Security Associations

In Case 1, all security is provided between end systems that implement IPSec. For any two end

systems to communicate via an SA, they must share the appropriate secret keys. Among the

possible combinations:

a. AH in transport mode

b. ESP in transport mode

c. ESP followed by AH in transport mode (an ESP SA inside an AH SA)

d. Any one of a, b, or c inside an AH or ESP in tunnel mode

Cryptography Module-5

 Prepared by Divyashree H S Dept. Of CSE, BrCE 19

For Case 2, security is provided only between gateways (routers, firewalls, etc.) and no hosts

implement IPSec. This case illustrates simple virtual private network support. The security

architecture document specifies that only a single tunnel SA is needed for this case. The

tunnel could support AH, ESP, or ESP with the authentication option. Nested tunnels are not

required because the IPSec services apply to the entire inner packet.

Case 3 builds on Case 2 by adding end-to-end security. The same combinations discussed for

cases 1 and 2 are allowed here. The gateway-to-gateway tunnel provides either authentication

or confidentiality or both for all traffic between end systems. When the gateway-to-gateway

tunnel is ESP, it also provides a limited form of traffic confidentiality. Individual hosts can

implement any additional IPSec services required for given applications or given users by

means of end-to-end SAs.

Case 4 provides support for a remote host that uses the Internet to reach an organization's

firewall and then to gain access to some server or workstation behind the firewall. Only tunnel

mode is required between the remote host and the firewall. As in Case 1, one or two SAs may

be used between the remote host and the local host.

5.5 INTERNET KEY EXCHANGE

The key management portion of IPSec involves the determination and distribution of secret

keys. A typical requirement is four keys for communication between two applications: transmit

and receive pairs for both AH and ESP. The IPSec Architecture document mandates support

for two types of key management:

● Manual: A system administrator manually configures each system with its own keys and

with the keys of other communicating systems. This is practical for small, relatively static

environments.

● Automated: An automated system enables the on-demand creation of keys for SAs and

facilitates the use of keys in a large distributed system with an evolving configuration. The

default automated key management protocol for IPSec is referred to as ISAKMP/Oakley and

consists of the following elements:

● Oakley Key Determination Protocol: Oakley is a key exchange protocol based on the

Diffie-Hellman algorithm but providing added security. Oakley is generic in that it does not

dictate specific formats.

● Internet Security Association and Key Management Protocol (ISAKMP): ISAKMP

provides a framework for Internet key management and provides the specific protocol support,

including formats, for negotiation of security attributes.

ISAKMP by itself does not dictate a specific key exchange algorithm; rather, ISAKMP

consists of a set of message types that enable the use of a variety of key exchange algorithms.

Oakley is the specific key exchange algorithm mandated for use with the initial version of

ISAKMP.

5.5.1 Key Determination Protocol
IKE key determination is a refinement of the Diffie-Hellman key exchange algorithm. Recall

that Diffie-Hellman involves the following interaction between users A and B. There is prior

agreement on two global parameters: q, a large prime number; and a a primitive root of q. A

selects a random integer XA as its private key, and transmits to B its public key YA = aXA mod
q. Similarly, B selects a random integer XB as its private key and transmits to A its public key

YB = aXB mod q. Each side can now compute the secret session key:

The Diffie-Hellman algorithm has two attractive features:

● Secret keys are created only when needed. There is no need to store secret keys for a long

period of time, exposing them to increased vulnerability.

Cryptography Module-5

 Prepared by Divyashree H S Dept. Of CSE, BrCE 20

● The exchange requires no preexisting infrastructure other than an agreement on the global

parameters.

However, there are a number of weaknesses to Diffie-Hellman:

● It does not provide any information about the identities of the parties.

● It is subject to a man-in-the-middle attack, in which a third party C impersonates B while

communicating with A and impersonates A while communicating with B. Both A and B end

up negotiating a key with C, which can then listen to and pass on traffic. The man-in-the-

middle attack proceeds as follows:

1. B sends his public key YB in a message addressed to A .

2. The enemy (E) intercepts this message. E saves B's public key and sends a message to A that

has B's User ID but E's public key YE. This message is sent in such a way that it appears as

though it was sent from B's host system. A receives E's message and stores E's public key with

B's User ID. Similarly, E sends a message to B with E's public key, purporting to come from

A.

3. B computes a secret key K1 based on B's private key and YE. A computes a secret key K2

based on A's private key and YE. E computes K1 using E's secret key XE and YB and computer

K2 using YE and YB.

4. From now on E is able to relay messages from A to B and from B to A, appropriately

changing their encipherment en route in such a way that neither A nor B will know that they

share their communication with E.

● It is computationally intensive. As a result, it is vulnerable to a clogging attack, in which an

opponent requests a high number of keys. The victim spends considerable computing resources

doing useless modular exponentiation rather than real work.

IKE key determination is designed to retain the advantages of Diffie-Hellman while

countering its weaknesses.

Features of IKE key determination

The IKE key determination algorithm is characterized by five important features:

1. It employs a mechanism known as cookies to thwart clogging attacks.

2. It enables the two parties to negotiate a group; this, in essence, specifies the global

parameters of the Diffie-Hellman key exchange.

3. It uses nonces to ensure against replay attacks.

4. It enables the exchange of Diffie-Hellman public key values.

5. It authenticates the Diffie-Hellman exchange to thwart man-in-the-middle attacks.

We have already discussed Diffie-Hellman. Let us look the remainder of these elements in turn.

First, consider the problem of clogging attacks. In this attack, an opponent forges the source

address of a legitimate user and sends a public Diffie-Hellman key to the victim. The victim

then performs a modular exponentiation to compute the secret key. Repeated messages of this

type can clog the victim's system with useless work. The cookie exchange requires that each

side send a pseudorandom number, the cookie, in the initial message, which the other side

acknowledges. This acknowledgment must be repeated in the first message of the Diffie-

Hellman key exchange. If the source address was forged, the opponent gets no answer. Thus,

an opponent can only force a user to generate acknowledgments and not to perform the Diffie-

Hellman calculation.

IKE mandates that cookie generation satisfy three basic requirements:

1. The cookie must depend on the specific parties. This prevents an attacker from obtaining

a cookie using a real IP address and UDP port and then using it to swamp the victim

with requests from randomly chosen IP addresses or ports.

2. It must not be possible for anyone other than the issuing entity to generate cookies that

will be accepted by that entity. This implies that the issuing entity will use local

Cryptography Module-5

 Prepared by Divyashree H S Dept. Of CSE, BrCE 21

secret information in the generation and subsequent verification of a cookie. It must not

be possible to deduce this secret information from any particular cookie. The point of

this requirement is that the issuing entity need not save copies of its cookies, which are

then more vulnerable to discovery, but can verify an incoming cookie acknowledgment

when it needs to.

3. The cookie generation and verification methods must be fast to thwart attacks intended

to sabotage processor resources.

The recommended method for creating the cookie is to perform a fast hash (e.g., MD5) over

the IP Source and Destination addresses, the UDP Source and Destination ports, and a locally

generated secret value.

Oakley (IKE key determination) supports the use of different groups for the Diffie-Hellman

key exchange. Each group includes the definition of the two global parameters and the identity

of the algorithm. The current specification includes the following groups:

The first three groups are the classic Diffie-Hellman algorithm using modular exponentiation.

The last two groups use the elliptic curve analog to Diffie-Hellman.

Oakley employs nonces to ensure against replay attacks. Each nonce is a locally generated

pseudorandom number. Nonces appear in responses and are encrypted during certain portions

of the exchange to secure their use.

Three different authentication methods can be used with Oakley:

● Digital signatures: The exchange is authenticated by signing a mutually obtainable hash;

each party encrypts the hash with its private key. The hash is generated over important

parameters, such as user IDs and nonces.

Cryptography Module-5

 Prepared by Divyashree H S Dept. Of CSE, BrCE 22

● Public-key encryption: The exchange is authenticated by encrypting parameters such as

IDs and nonces with the sender's private key.

● Symmetric-key encryption: A key derived by some out-of-band mechanism can be used

to authenticate the exchange by symmetric encryption of exchange parameters.

IKEv2 Exchanges

The Oakley specification (IKEv2 protocol) includes a number of examples of exchanges that

are allowable under the protocol. To give a flavor of Oakley, we present one example, called

aggressive key exchange in the specification, so called because only three messages are

exchanged.

Figure 5.12 shows the aggressive key exchange protocol. In the first step, the initiator (I)

transmits a cookie, the group to be used, and I's public Diffie-Hellman key for this exchange.

I also indicates the offered public-key encryption, hash, and authentication algorithms to be

used in this exchange. Also included in this message are the identifiers of I and the responder

(R) and I's nonce for this exchange. Finally, I appends a signature using I's private key that

signs the two identifiers, the nonce, the group, the Diffie-Hellman public key, and the offered

algorithms.

Figure 5.12: IKEv2 Exchanges

When R receives the message, R verifies the signature using I's public signing key. R

acknowledges the message by echoing back I's cookie, identifier, and nonce, as well as the

group. R also includes in the message a cookie, R's Diffie-Hellman public key, the selected

algorithms (which must be among the offered algorithms), R's identifier, and R's nonce for

Cryptography Module-5

 Prepared by Divyashree H S Dept. Of CSE, BrCE 23

this exchange. Finally, R appends a signature using R's private key that signs the two

identifiers, the two nonces, the group, the two Diffie-Hellman public keys, and the selected

algorithms.

When I receives the second message, I verifies the signature using R's public key. The

nonce values in the message assure that this is not a replay of an old message. To complete the

exchange, I must send a message back to R to verify that I has received R's public key.

Header and payload formats

IKE defines procedures and packet formats to establish, negotiate, modify, and delete security

associations. As part of SA establishment, ISAKMP defines payloads for exchanging key

generation and authentication data. These payload formats provide a consistent framework

independent of the specific key exchange protocol, encryption algorithm, and authentication

mechanism.

IKE Header Format

An ISAKMP (IKE) message consists of an ISAKMP header followed by one or more payloads.

All of this is carried in a transport protocol. The specification dictates that implementations

must support the use of UDP for the transport protocol.

Figure 5.13a shows the header format for an ISAKMP(IKE) message. It consists of the

following fields:

● Initiator SPI (64 bits): Cookie of entity that initiated SA establishment, SA notification, or

SA deletion.

● Responder SPI (64 bits): Cookie of responding entity; null in first message from initiator.

● Next Payload (8 bits): Indicates the type of the first payload in the message;

● Major Version (4 bits): Indicates major version of ISAKMP in use.

● Minor Version (4 bits): Indicates minor version in use.

● Exchange Type (8 bits): Indicates the type of exchange;

● Flags (8 bits): Indicates specific options set for this ISAKMP exchange. Two bits so far

defined: The Encryption bit is set if all payloads following the header are encrypted using the

encryption algorithm for this SA. The Commit bit is used to ensure that encrypted material is

not received prior to completion of SA establishment.

● Message ID (32 bits): Unique ID for this message.

● Length (32 bits): Length of total message (header plus all payloads) in octets.

Figure 5.13 IKE formats

Cryptography Module-5

 Prepared by Divyashree H S Dept. Of CSE, BrCE 24

IKE Payload Types

All IKE (ISAKMP) payloads begin with the same generic payload header shown in Figure

5.13b. The Next Payload field has a value of 0 if this is the last payload in the message;

otherwise its value is the type of the next payload. The Payload Length field indicates the length

in octets of this payload, including the generic payload header.

Table 5.3 summarizes the payload types defined for IKE (ISAKMP), and lists the fields,

or parameters, that are part of each payload. The SA payload is used to begin the establishment

of an SA. In this payload, the Domain of Interpretation parameter identifies the DOI under

which negotiation is taking place. The IPSec DOI is one example, but ISAKMP can be used in

other contexts. The Situation parameter defines the security policy for this negotiation; in

essence, the levels of security required for encryption and confidentiality are specified (e.g.,

sensitivity level, security compartment).

The Proposal payload contains information used during SA negotiation. The payload indicates

the protocol for this SA (ESP or AH) for which services and mechanisms are being negotiated.

The payload also includes the sending entity's SPI and the number of transforms. Each

transform is contained in a transform payload. The use of multiple transform payloads enables

the initiator to offer several possibilities, of which the responder must choose one or reject the

offer.

The Transform payload defines a security transform to be used to secure the communications

channel for the designated protocol. The Transform # parameter serves to identify this

particular payload so that the responder may use it to indicate acceptance of this transform. The

Transform-ID and Attributes fields identify a specific transform (e.g., 3DES for ESP, HMAC-

SHA-1-96 for AH) with its associated attributes (e.g., hash length).

Table 5.3 IKE payload types

The Key Exchange payload can be used for a variety of key exchange techniques, including

Oakley, Diffie-Hellman, and the RSA-based key exchange used by PGP. The Key Exchange

data field contains the data required to generate a session key and is dependent on the key

exchange algorithm used.

Cryptography Module-5

 Prepared by Divyashree H S Dept. Of CSE, BrCE 25

The Identification payload is used to determine the identity of communicating peers and may

be used for determining authenticity of information. Typically the ID Data field will contain

an IPv4 or IPv6 address.

The Certificate payload transfers a public-key certificate. The Certificate Encoding field

indicates the type of certificate or certificate-related information, which may include the

following:

● PKCS #7 wrapped X.509 certificate

● PGP certificate

● DNS signed key

● X.509 certificate signature

● X.509 certificate key exchange

● Kerberos tokens

● Certificate Revocation List (CRL)

● Authority Revocation List (ARL)

● SPKI certificate

At any point in an ISAKMP exchange, the sender may include a Certificate Request payload

to request the certificate of the other communicating entity. The payload may list more than

one certificate type that is acceptable and more than one certificate authority that is acceptable.

The Hash payload contains data generated by a hash function over some part of the message

and/or ISAKMP state. This payload may be used to verify the integrity of the data in a message

or to authenticate negotiating entities.

The Signature payload contains data generated by a digital signature function over some part

of the message and/or ISAKMP state. This payload is used to verify the integrity of the data in

a message and may be used for nonrepudiation services.

The Nonce payload contains random data used to guarantee liveness during an exchange and

protect against replay attacks.

The Notification payload contains either error or status information associated with this SA

or this SA negotiation.

Cryptography Module-5

 Prepared by Divyashree H S Dept. Of CSE, BrCE 26

Responder-Lifetime: Communicates the SA lifetime chosen by the responder.

● Replay-Status: Used for positive confirmation of the responder's election of whether or

not the responder will perform anti-replay detection.

● Initial-Contact: Informs the other side that this is the first SA being established with the

remote system. The receiver of this notification might then delete any existing SA's it has for

the sending system under the assumption that the sending system has rebooted and no longer

has access to those SAs.

The Delete payload indicates one or more SAs that the sender has deleted from its database

and that therefore are no longer valid.

5.6 Cryptographic Suits

Figure 5.14: Cryptographic suits for IPSec

Cryptography Module-5

 Prepared by Divyashree H S Dept. Of CSE, BrCE 27

Three types of secret key algorithms are used:

Three categories of secret key algorithms are listed:

For the Diffie-Hellman algorithm, the use of elliptic curve groups modulo a prime is specified.

For authentication, elliptic curve digital signatures are listed. The original IKEv2 documents

used RSA based digital signatures. Equivalent or greater strength can be achieved using ECC

with fewer key bits.

