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Course Learning Objectives: This course (18CS744) will enable students to: 

• Define cryptography and its principles 
• Explain Cryptography algorithms 
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• Explain authentication protocols 
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Classical Encryption Techniques Symmetric Cipher Model, Cryptography, Cryptanalysis 
and Brute-Force Attack, Substitution Techniques, Caesar Cipher, Monoalphabetic Cipher, 
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standard, DES encryption, DES decryption, A DES example, results, the avalanche effect, 
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RBT: L1, L2 
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cryptosystems. public-key cryptanalysis. The RSA algorithm, desription of the algorithm, 
computational aspects, the security of RSA.  

Other Public-Key Cryptosystems: Diffie-hellman key exchange, The algorithm, key 
exchange protocols, man in the middle attack,Elgamal Cryptographic systems 
Textbook 1: Ch. 9, Ch. 10.1,10.2 
RBT: L1, L2 
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Elliptic curve arithmetic, abelian groups, elliptic curves over real numbers, elliptic curves 
over Zp, elliptic curves overGF(2m), Elliptic curve cryptography, Analog of Diffie-hellman 
key exchange, Elliptic curve encryption/ decryption, security of Elliptic curve cryptography, 
Pseudorandom number generation based on an asymmetric cipher, PRNG based on RSA. 

Key Management and Distribution: Symmetric key distribution using Symmetric 
encryption, A key distribution scenario, Hierarchical key control, session key lifetime, a 
transparent key control scheme, Decentralized key control, controlling key usage, 
Symmetric key distribution using asymmetric encryption, simple secret key distribution, 
secret key distribution with confidentiality and authentication, A hybrid scheme, distribution 
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authority, public keys certificates. 
Textbook 1: Ch. 10.3-10.5, Ch.14.1 to 14.3 
RBT: L1, L2 
Module – 4 

X-509 certificates. Certificates, X-509 version 3, public key infrastructure .User 

Authentication: Remote user Authentication principles, Mutual Authentication, one 
wayAuthentication, remote user Authentication using Symmetric encryption, Mutual 
Authentication, one way Authentication, Kerberos, Motivation , Kerberos version 4, 
Kerberos version 5, Remote user Authentication using Asymmetric encryption, Mutual 
Authentication, one way Authentication. Electronic Mail Security: Pretty good privacy, 
notation, operational; description, S/MIME, RFC5322, Multipurpose internet mail 
extensions, S/MIME functionality, S/MIME messages, S/MIME certificate processing, 
enhanced security services, Domain keys identified mail, internet mail architecture, E-Mail 
threats, DKIM strategy, DKIM functional flow. 
Textbook 1: Ch. 14.4, Ch. 15.1 to 15.4, Ch.19 
RBT: L1, L2 

08 

Module – 5 

IP Security: IP Security overview, applications of IPsec, benefits of IPsec, Routing 
applications, IPsec documents, IPsec services, transport and tunnel modes, IP Security policy, 
Security associations, Security associations database, Security policy database, IP traffic 
processing, Encapsulating Security payload, ESP format, encryption and authentication 
algorithms, Padding, Anti replay service 

Transport and tunnel modes, combining security associations, authentication plus 
confidentiality, basic combinations of security associations, internet key exchange, key 
determinations protocol, header and payload formats, cryptographic suits.  
Textbook 1: Ch. 20.1 to 20.3 
RBT: L1, L2 

08 

Course outcomes: The students should be able to: 
• Define cryptography and its principles 
• Explain Cryptography algorithms 
• Illustrate Public and Private key cryptography 
• Explain Key management, distribution and ceritification  
• Explain authentication protocols 
• Tell about IPSec 

Question paper pattern: 

• The question paper will have ten questions.  
• There will be 2 questions from each module.  
• Each question will have questions covering all the topics under a module.  
• The students will have to answer 5 full questions, selecting one full question from each module. 

Text  Books: 

1. William Stallings: Cryptography and Network Security, Pearson 6th edition. 
Reference Books: 

1. V K Pachghare: Cryptography and Information Security, PHI 2nd Edition. 
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Module-1: 

Classical Encryption Techniques 
 

Symmetric encryption, also referred to as conventional encryption or single-key 

encryption, was the only type of encryption in use prior to the development of public-key 

encryption in the 1970s. It remains by far the most widely used of the two types of encryption. 

 

1.1 Some Basic Terminology 
An original message is known as the plaintext, while the coded message is called the 

ciphertext. The process of converting from plaintext to ciphertext is known as enciphering 

or encryption; restoring the plaintext from the ciphertext is deciphering or decryption. The 

many schemes used for encryption constitute the area of study known as cryptography. Such 

a scheme is known as a cryptographic system or a cipher. Techniques used for deciphering 

a message without any knowledge of the enciphering details fall into the area of cryptanalysis. 

Cryptanalysis is what the layperson calls "breaking the code." The areas of cryptography and 

cryptanalysis together are called cryptology. 

 

1.2 Symmetric Cipher Model 
A symmetric encryption scheme has five ingredients as shown in figure 1.1 

• Plaintext: This is the original intelligible message or data that is fed into the algorithm 

as input. 

• Encryption algorithm: The encryption algorithm performs various substitutions and 

transformations on the plaintext. 

• Secret key: The secret key is also input to the encryption algorithm. The key is a value 

independent of the plaintext and of the algorithm. The algorithm will produce a 

different output depending on the specific key being used at the time. The exact 

substitutions and transformations performed by the algorithm depend on the key. 

• Ciphertext: This is the scrambled message produced as output. It depends on the 

plaintext and the secret key. For a given message, two different keys will produce two 

different ciphertexts. The ciphertext is an apparently random stream of data and, as it 

stands, is unintelligible. 

• Decryption algorithm: This is essentially the encryption algorithm run in reverse. It 

takes the ciphertext and the secret key and produces the original plaintext. 
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Figure 1.1: Simplified Model of Conventional Encryption 

There are two requirements for secure use of conventional encryption: 

1. We need a strong encryption algorithm. At a minimum, we would like the algorithm 

to be such that an opponent who knows the algorithm and has access to one or more 

ciphertexts would be unable to decipher the ciphertext or figure out the key. This 

requirement is usually stated in a stronger form: The opponent should be unable to 

decrypt ciphertext or discover the key even if he or she is in possession of a number 

of ciphertexts together with the plaintext that produced each ciphertext. 

2. Sender and receiver must have obtained copies of the secret key in a secure fashion and 

must keep the key secure. If someone can discover the key and knows the algorithm, 

all communication using this key is readable. 

Let us take a closer look at the essential elements of a symmetric encryption scheme, using 

Figure 1.2. A source produces a message in plaintext, X = [X1, X2, ..., XM]. The M elements of 

X are letters in some finite alphabet. Traditionally, the alphabet usually consisted of the 26 

capital letters. Nowadays, the binary alphabet {0, 1} is typically used. For encryption, a key 

of the form K = [K1, K2, ..., KJ] is generated. If the key is generated at the message source, 

then it must also be provided to the destination by means of some secure channel. Alternatively, 

a third party could generate the key and securely deliver it to both source and destination. 

 

Figure 1.2. Model of Conventional Cryptosystem 
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With the message X and the encryption key K as input, the encryption algorithm forms the 

ciphertext Y = [Y1, Y2, ..., YN]. 

We can write this as 

Y = E(K, X) 

This notation indicates that Y is produced by using encryption algorithm E as a function of the 

plaintext X, with the specific function determined by the value of the key K. 

The intended receiver, in possession of the key, is able to invert the transformation: 

X = D(K, Y) 

An opponent, observing Y but not having access to K or X, may attempt to recover X or K or 

both X and K. It is assumed that the opponent knows the encryption (E) and decryption (D) 

algorithms. If the opponent is interested in only this particular message, then the focus of the 

effort is to recover X by generating a plaintext estimate X’ . Often, however, the opponent is 

interested in being able to read future messages as well, in which case an attempt is made to 

recover K by generating an estimate K’. 

 

1.3 Cryptography 
Cryptographic systems are characterized along three independent dimensions: 

1. The type of operations used for transforming plaintext to ciphertext. All encryption 

algorithms are based on two general principles: substitution, in which each element in 

the plaintext (bit, letter, group of bits or letters) is mapped into another element, and 

transposition, in which elements in the plaintext are rearranged. The fundamental 

requirement is that no information be lost (that is, that all operations are reversible). 

Most systems, referred to as product systems, involve multiple stages of substitutions 

and transpositions. 

2. The number of keys used. If both sender and receiver use the same key, the system is 

referred to as symmetric, single-key, secret-key, or conventional encryption. If the 

sender and receiver use different keys, the system is referred to as asymmetric, two- 

key, or public-key encryption. 

3. The way in which the plaintext is processed. A block cipher processes the input one 

block of elements at a time, producing an output block for each input block. A stream 

cipher processes the input elements continuously, producing output one element at a 

time, as it goes along. 

 

1.4 Cryptanalysis 
There are two general approaches to attacking a conventional encryption scheme: 

Cryptanalysis: Cryptanalytic attacks rely on the nature of the algorithm plus perhaps some 

knowledge of the general characteristics of the plaintext or even some sample 

plaintextciphertext pairs. This type of attack exploits the characteristics of the algorithm to 

attempt to deduce a specific plaintext or to deduce the key being used. 

Brute-force attack: The attacker tries every possible key on a piece of ciphertext until an 

intelligible translation into plaintext is obtained. On average, half of all possible keys must be 

tried to achieve success. 
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If either type of attack succeeds in deducing the key, the effect is catastrophic: All 

future and past messages encrypted with that key are compromised. 

 
Table 1.1. Types of Attacks on Encrypted Messages 

An encryption scheme is unconditionally secure if the ciphertext generated by the 

scheme does not contain enough information to determine uniquely the corresponding 

plaintext, no matter how much ciphertext is available. That is, no matter how much time an 

opponent has, it is impossible for him or her to decrypt the ciphertext, simply because the 

required information is not there. With the exception of a scheme known as the one-time pad, 

there is no encryption algorithm that is unconditionally secure. Therefore, all that the users of 

an encryption algorithm can strive for is an algorithm that meets one or both of the following 

criteria: 

● The cost of breaking the cipher exceeds the value of the encrypted information. 

● The time required to break the cipher exceeds the useful lifetime of the information. 

An encryption scheme is said to be computationally secure if either of the foregoing 

two criteria are met. The rub is that it is very difficult to estimate the amount of effort required 

to cryptanalyze ciphertext successfully. 

A brute-force attack involves trying every possible key until an intelligible translation 

of the ciphertext into plaintext is obtained. On average, half of all possible keys must be tried 

to achieve success. Table 1.2 shows how much time is involved for various key spaces. 
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Table 1.2. Average Time Required for Exhaustive Key Search 

 

1.5 Substitution Techniques 
The two basic building blocks of all encryption techniques are substitution and 

transposition. 

A substitution technique is one in which the letters of plaintext are replaced by other letters or 

by numbers or symbols. If the plaintext is viewed as a sequence of bits, then substitution 

involves replacing plaintext bit patterns with ciphertext bit patterns. 

 
1.5.1 Caesar Cipher 

The earliest known use of a substitution cipher, and the simplest, was by Julius Caesar. 

The Caesar cipher involves replacing each letter of the alphabet with the letter standing three 

places further down the alphabet. 

For example, 

plain: meet me after the toga party 

cipher: PHHW PH DIWHU WKH WRJD SDUWB 

Note that the alphabet is wrapped around, so that the letter following Z is A. We can define 

the transformation by listing all possibilities, as follows: 
plain: a b c d e f g h i j k l m n o p q r s t u v w x y z 

cipher: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C 

Let us assign a numerical equivalent to each letter: 

a b c d e f g h i j k  l m n  o  p  q  r s t  u  v w  x  y  z 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

 
Then the algorithm can be expressed as follows. For each plaintext letter p, substitute the 

ciphertext letter C: 

C = E(3, p) = (p + 3) mod 26 

A shift may be of any amount, so that the general Caesar algorithm is 

C = E(k, p) = (p + k) mod 26 

where k takes on a value in the range 1 to 25. The decryption algorithm is simply 
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p = D(k, C) = (C k) mod 26 

If it is known that a given ciphertext is a Caesar cipher, then a brute-force cryptanalysis is 

easily performed: Simply try all the 25 possible keys. 

Figure 1.3 shows the results of applying this strategy to the example ciphertext. In this case, 

the plaintext leaps out as occupying the third line. 

 

Figure 1.3. Brute-Force Cryptanalysis of Caesar Cipher 

Three important characteristics of this problem enabled us to use a brute-force cryptanalysis: 

1. The encryption and decryption algorithms are known. 

2. There are only 25 keys to try. 

3. The language of the plaintext is known and easily recognizable. 

In most networking situations, we can assume that the algorithms are known. What 

generally makes brute-force cryptanalysis impractical is the use of an algorithm that employs 

a large number of keys. 

For example, the triple DES algorithm, makes use of a 168-bit key, giving a key space 

of 2^168 or greater than 3.7 x 1050 possible keys. 

The third characteristic is also significant. If the language of the plaintext is unknown, 

then plaintext output may not be recognizable. Furthermore, the input may be abbreviated or 

compressed in some fashion, again making recognition difficult. 
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For example, Figure 1.4 shows a portion of a text file compressed using an algorithm 

called ZIP. If this file is then encrypted with a simple substitution cipher (expanded to include 

more than just 26 alphabetic characters), then the plaintext may not be recognized when it is 

uncovered in the brute-force cryptanalysis. 

 

Figure 1.4: Sample of Compressed Text 

 

1.5.2 Monoalphabetic Ciphers 
With only 25 possible keys, the Caesar cipher is far from secure. A dramatic increase 

in the key space can be achieved by allowing an arbitrary substitution. 

If, instead, the "cipher" line can be any permutation of the 26 alphabetic characters, then 

there are 26! or greater than 4 x 10^26 possible keys. This is 10 orders of magnitude greater 

than the key space for DES and would seem to eliminate brute-force techniques for 

cryptanalysis. Such an approach is referred to as a monoalphabetic substitution cipher, 

because a single cipher alphabet (mapping from plain alphabet to cipher alphabet) is used per 

message. 

There is, another line of attack. If the cryptanalyst knows the nature of the plaintext (e.g., 

noncompressed English text), then the analyst can exploit the regularities of the language. The 

ciphertext to be solved is 

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ 

VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX 

EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ 

 

As a first step, the relative frequency of the letters can be determined and compared to 

a standard frequency distribution for English, such as is shown in Figure 1.5. If the message 

were long enough, this technique alone might be sufficient, but because this is a relatively short 

message, we cannot expect an exact match. In any case, the relative frequencies of the letters 

in the ciphertext (in percentages) are as follows: 
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Figure 1.5. Relative Frequency of Letters in English Text 

Comparing this breakdown with Figure 1.5, it seems likely that cipher letters P and Z 

are the equivalents of plain letters e and t, but it is not certain which is which. The letters S, 

U, O, M, and H are all of relatively high frequency and probably correspond to plain letters 

from the set {a, h, i, n, o, r, s}.The letters with the lowest frequencies (namely, A, B, G, Y, I, 

J) are likely included in the set {b, j, k, q, v, x, z}. 

There are a number of ways to proceed at this point. We could make some tentative 

assignments and start to fill in the plaintext to see if it looks like a reasonable "skeleton" of a 

message. A more systematic approach is to look for other regularities. For example, certain 

words may be known to be in the text. Or we could look for repeating sequences of cipher 

letters and try to deduce their plaintext equivalents. 

A powerful tool is to look at the frequency of two-letter combinations, known as 

digrams. A table similar to Figure 1.5 could be drawn up showing the relative frequency of 

digrams. The most common such digram is th. In our ciphertext, the most common digram is 

ZW, which appears three times. So we make the correspondence of Z with t and W with h. 

Then, by our earlier hypothesis, we can equate P with e. Now notice that the sequence ZWP 

appears in the ciphertext, and we can translate that sequence as "the." This is the most frequent 

trigram (three-letter combination) in English, which seems to indicate that we are on the right 

track. 

Next, notice the sequence ZWSZ in the first line. We do not know that these four letters form 

a complete word, but if they do, it is of the form th_t. If so, S equates with a. 

So far, then, we have 
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Only four letters have been identified, but already we have quite a bit of the message. Continued 

analysis of frequencies plus trial and error should easily yield a solution from this point. The 

complete plaintext, with spaces added between words, follows: 

it was disclosed yesterday that several informal but 

direct contacts have been made with political 

representatives of the viet cong in moscow 

Monoalphabetic ciphers are easy to break because they reflect the frequency data of the 

original alphabet. A countermeasure is to provide multiple substitutes, known as homophones, 

for a single letter. For example, the letter e could be assigned a number of different cipher 

symbols, such as 16, 74, 35, and 21, with each homophone used in rotation, or randomly. If 

the number of symbols assigned to each letter is proportional to the relative frequency of that 

letter, then single-letter frequency information is completely obliterated. 

The great mathematician Carl Friedrich Gauss believed that he had devised an 

unbreakable cipher using homophones. However, even with homophones, each element of 

plaintext affects only one element of ciphertext, and multiple-letter patterns (e.g., digram 

frequencies) still survive in the ciphertext, making cryptanalysis relatively straightforward. 

 

1.5.3 Playfair Cipher 
The best-known multiple-letter encryption cipher is the Playfair, which treats digrams 

in the plaintext as single units and translates these units into ciphertext digrams. The Playfair 

algorithm is based on the use of a 5 x 5 matrix of letters constructed using a keyword. Here is 

an example, solved by Lord Peter Wimsey in Dorothy Sayers's Have His Carcase 

M O N A R 

C H Y B D 

E F G I/J K 

L P Q S T 

U V W X Z 

 
In this case, the keyword is monarchy. The matrix is constructed by filling in the letters of the 

keyword (minus duplicates) from left to right and from top to bottom, and then filling in the 

remainder of the matrix with the remaining letters in alphabetic order. The letters I and J count 

as one letter. 

Plaintext is encrypted two letters at a time, according to the following rules: 

1. Repeating plaintext letters that are in the same pair are separated with a filler letter, such as 

x, so that balloon would be treated as ba lx lo on. 

2. Two plaintext letters that fall in the same row of the matrix are each replaced by the letter to 

the right, with the first element of the row circularly following the last. For example, ar is 

encrypted as RM. 
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3. Two plaintext letters that fall in the same column are each replaced by the letter beneath, 

with the top element of the column circularly following the last. For example, mu is encrypted 

as CM. 

4. Otherwise, each plaintext letter in a pair is replaced by the letter that lies in its own row and 

the column occupied by the other plaintext letter. Thus, hs becomes BP and ea becomes IM (or 

JM, as the encipherer wishes). 

 
The Playfair cipher is a great advance over simple monoalphabetic ciphers. For one 

thing, whereas there are only 26 letters, there are 26 x 26 = 676 digrams, so that identification 

of individual digrams is more difficult. Furthermore, the relative frequencies of individual 

letters exhibit a much greater range than that of digrams, making frequency analysis much 

more difficult. For these reasons, the Playfair cipher was for a long time considered 

unbreakable. It was used as the standard field system by the British Army in World War I and 

still enjoyed considerable use by the U.S. Army and other Allied forces during World War II. 

Despite this level of confidence in its security, the Playfair cipher is relatively easy to 

break because it still leaves much of the structure of the plaintext language intact. A few 

hundred letters of ciphertext are generally sufficient. 

One way of revealing the effectiveness of the Playfair and other ciphers is shown in 

Figure 1.6. The line labeled plaintext plots the frequency distribution of the more than 70,000 

alphabetic characters in the Encyclopaedia Brittanica article on cryptology. 

This is also the frequency distribution of any monoalphabetic substitution cipher. The 

plot was developed in the following way: The number of occurrences of each letter in the text 

was counted and divided by the number of occurrences of the letter e (the most frequently used 

letter). As a result, e has a relative frequency of 1, t of about 0.76, and so on. The points on the 

horizontal axis correspond to the letters in order of decreasing frequency. 

 

Figure 1.6. Relative Frequency of Occurrence of Letters 
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1.5.3 Hill Cipher 
Another interesting multiletter cipher is the Hill cipher, developed by the 

mathematician Lester Hill in 1929. The encryption algorithm takes m successive plaintext 

letters and substitutes for them m ciphertext letters. The substitution is determined by m linear 

equations in which each character is assigned a numerical value (a = 0, b = 1 ... z = 25). For 

m = 3, the system can be described as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where C and P are column vectors of length 3, representing the plaintext and ciphertext, and 

K is a 3 x 3 matrix, representing the encryption key. Operations are performed mod 26. 

For example, consider the plaintext "paymoremoney" and use the encryption key 

 

The first three letters of the plaintext are represented by the vector 

the ciphertext for the entire plaintext is LNSHDLEWMTRW. 

Decryption requires using the inverse of the matrix K. The inverse K1 of a matrix K is 

defined by the equation KK1 = K1K = I, where I is the matrix that is all zeros except for 
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ones along the main diagonal from upper left to lower right. The inverse of a matrix does not 

always exist, but when it does, it satisfies the preceding equation. In this case, the inverse is: 

 

This is demonstrated as follows: 

It is easily seen that if the matrix K1 is applied to the ciphertext, then the plaintext is 

recovered. To explain how the inverse of a matrix is determined, we make an exceedingly brief 

excursion into linear algebra. 

For any square matrix (m x m) the determinant equals the sum of all the products that can be 

formed by taking exactly one element from each row and exactly one element from each 

column, with certain of the product terms preceded by a minus sign. For a 2 x 2 matrix 

 

the determinant is k11k22 k12k21. For a 3 x 3 matrix, the value of the determinant is k11k22k33 

+ k21k32k13 + k31k12k23 k31k22k13 k21k12k33 k11k32k23. If a square matrix A has a nonzero 

determinant, then the inverse of the matrix is computed as [A1]ij = (1)i+j(Dij)/ded(A), where 

(Dij) is the subdeterminant formed by deleting the ith row and the jth column of A and det(A) 

is the determinant of A. For our purposes, all arithmetic is done mod 26. 

In general terms, the Hill system can be expressed as follows: 

C = E(K, P) = KP mod 26 

P = D(K, P) = K1C mod 26 = K1KP = P 

As with Playfair, the strength of the Hill cipher is that it completely hides single-letter 

frequencies. Indeed, with Hill, the use of a larger matrix hides more frequency information. 

Thus a 3 x 3 Hill cipher hides not only single-letter but also two-letter frequency information. 

Although the Hill cipher is strong against a ciphertext-only attack, it is easily broken with a 

known plaintext attack. For an m x m Hill cipher, suppose we have m plaintext-ciphertext pairs, 

each of length m. We label the pairs 

 

unknown key matrix K. Now define two m x m matrices X = (Pij) and Y = (Cij). Then we can 

form the matrix equation Y = KX. If X has an inverse, then we can determine K = YX1. If X 

is not invertible, then a new version of X can be formed with additional plaintext- ciphertext 

pairs until an invertible X is obtained. 

 
Suppose that the plaintext "friday" is encrypted using a 2 x 2 Hill cipher to yield the ciphertext 

PQCFKU. Thus, we know that 
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Using the first two plaintext-ciphertext pairs, we have 

The inverse of X can be computed: 

 

So 

This result is verified by testing the remaining plaintext-ciphertext pair. 

 

1.5.4 Polyalphabetic Ciphers 
Another way to improve on the simple monoalphabetic technique is to use different 

monoalphabetic substitutions as one proceeds through the plaintext message. The general name 

for this approach is polyalphabetic substitution cipher. 

All these techniques have the following features in common: 

1. A set of related monoalphabetic substitution rules is used. 

2. A key determines which particular rule is chosen for a given transformation. 

The best known, and one of the simplest, such algorithm is referred to as the Vigenère 

cipher. In this scheme, the set of related monoalphabetic substitution rules consists of the 26 

Caesar ciphers, with shifts of 0 through 25. Each cipher is denoted by a key letter, which is the 

ciphertext letter that substitutes for the plaintext letter a. Thus, a Caesar cipher with a shift of 3 

is denoted by the key value d. 

To aid in understanding the scheme and to aid in its use, a matrix known as the Vigenère 

tableau is constructed (Table 1.3). Each of the 26 ciphers is laid out horizontally, with the key 

letter for each cipher to its left. A normal alphabet for the plaintext runs across the top. The 

process of encryption is simple: Given a key letter x and a plaintext letter y, the ciphertext letter 

is at the intersection of the row labeled x and the column labeled y; in this case the ciphertext 

is V. 
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Table 1.3. The Modern Vigenère Tableau 

To encrypt a message, a key is needed that is as long as the message. Usually, the key 

is a repeating keyword. For example, if the keyword is deceptive, the message "we are 

discovered save yourself" is encrypted as follows: 

key: deceptivedeceptivedeceptive 

plaintext: wearediscoveredsaveyourself 

ciphertext: ZICVTWQNGRZGVTWAVZHCQYGLMGJ 

Decryption is equally simple. The key letter again identifies the row. The position of the 

ciphertext letter in that row determines the column, and the plaintext letter is at the top of that 

column. The strength of this cipher is that there are multiple ciphertext letters for each plaintext 

letter, one for each unique letter of the keyword. Thus, the letter frequency information is 

obscured. However, not all knowledge of the plaintext structure is lost. For example, Figure 

1.6 shows the frequency distribution for a Vigenère cipher with a keyword of length 9. An 

improvement is achieved over the Playfair cipher, but considerable frequency information 

remains. 

 
It is instructive to sketch a method of breaking this cipher, because the method reveals some of 

the mathematical principles that apply in cryptanalysis. 

First, suppose that the opponent believes that the ciphertext was encrypted using either 

monoalphabetic substitution or a Vigenère cipher. A simple test can be made to make a 

determination. If a monoalphabetic substitution is used, then the statistical properties of the 

ciphertext should be the same as that of the language of the plaintext. Thus, referring to Figure 

1.5, there should be one cipher letter with a relative frequency of occurrence of about 12.7%, 

one with about 9.06%, and so on. If only a single message is available for analysis, we would 

not expect an exact match of this small sample with the statistical profile of the plaintext 

language. Nevertheless, if the correspondence is close, we can assume a monoalphabetic 

substitution. 
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If, on the other hand, a Vigenère cipher is suspected, then progress depends on determining the 

length of the keyword, as will be seen in a moment. For now, let us concentrate on how the 

keyword length can be determined. The important insight that leads to a solution is the 

following: If two identical sequences of plaintext letters occur at a distance that is an integer 

multiple of the keyword length, they will generate identical ciphertext sequences. In the 

foregoing example, two instances of the sequence "red" are separated by nine character 

positions. Consequently, in both cases, r is encrypted using key letter e, e is encrypted using 

key letter p, and d is encrypted using key letter t. Thus, in both cases the ciphertext sequence is 

VTW. 

An analyst looking at only the ciphertext would detect the repeated sequences VTW at a 

displacement of 9 and make the assumption that the keyword is either three or nine letters in 

length. The appearance of VTW twice could be by chance and not reflect identical plaintext 

letters encrypted with identical key letters. However, if the message is long enough, there will 

be a number of such repeated ciphertext sequences. By looking for common factors in the 

displacements of the various sequences, the analyst should be able to make a good guess of the 

keyword length. Solution of the cipher now depends on an important insight. If the keyword 

length is N, then the cipher, in effect, consists of N monoalphabetic substitution ciphers. For 

example, with the keyword DECEPTIVE, the letters in positions 1, 10, 19, and so on are all 

encrypted with the same monoalphabetic cipher. Thus, we can use the known frequency 

characteristics of the plaintext language to attack each of the monoalphabetic ciphers 

separately. 

 

The periodic nature of the keyword can be eliminated by using a nonrepeating keyword that 

is as long as the message itself. Vigenère proposed what is referred to as an autokey system, 

in which a keyword is concatenated with the plaintext itself to provide a running key. For our 

example, 

key: deceptivewearediscoveredsav 

plaintext: wearediscoveredsaveyourself 

ciphertext:ZICVTWQNGKZEIIGASXSTSLVVWLA 

Even this scheme is vulnerable to cryptanalysis. Because the key and the plaintext share the 

same frequency distribution of letters, a statistical technique can be applied. For example, e 

enciphered by e, by Figure 1.5, can be expected to occur with a frequency of (0.127)=2 0.016, 

whereas t enciphered by t would occur only about half as often. These regularities can be 

exploited to achieve successful cryptanalysis. 

The ultimate defense against such a cryptanalysis is to choose a keyword that is as long as the 

plaintext and has no statistical relationship to it. Such a system was introduced by an AT&T 

engineer named Gilbert Vernam in 1918. 

 

Figure 1.7: Vernam Cipher 
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His system works on binary data rather than letters. The system can be expressed succinctly 

as follows: 

Thus, the ciphertext is generated by performing the bitwise XOR of the plaintext and the key. 

Because of the properties of the XOR, decryption simply involves the same bitwise operation: 

 

The essence of this technique is the means of construction of the key. Vernam proposed the 

use of a running loop of tape that eventually repeated the key, so that in fact the system worked 

with a very long but repeating keyword. Although such a scheme, with a long key, presents 

formidable cryptanalytic difficulties, it can be broken with sufficient ciphertext, the use of 

known or probable plaintext sequences, or both. 

 

1.5.6 One-Time Pad 
An Army Signal Corp officer, Joseph Mauborgne, proposed an improvement to the 

Vernam cipher that yields the ultimate in security. Mauborgne suggested using a random key 

that is as long as the message, so that the key need not be repeated. In addition, the key is to be 

used to encrypt and decrypt a single message, and then is discarded. Each new message requires 

a new key of the same length as the new message. Such a scheme, known as a one- time pad, 

is unbreakable. 

It produces random output that bears no statistical relationship to the plaintext. Because 

the ciphertext contains no information whatsoever about the plaintext, there is simply no way 

to break the code. 

An example should illustrate our point. Suppose that we are using a Vigenère scheme 

with 27 characters in which the twenty-seventh character is the space character, but with a one-

time key that is as long as the message. Thus, the tableau of Table 1.3 must be expanded to 27 

x 27. 

Consider the ciphertext 

ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS 

 

We now show two different decryptions using two different keys: 

ciphertext: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS 

key: pxlmvmsydofuyrvzwc tnlebnecvgdupahfzzlmnyih 

plaintext: mr mustard with the candlestick in the hall 

ciphertext: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS 

key: mfugpmiydgaxgoufhklllmhsqdqogtewbqfgyovuhwt 
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plaintext: miss scarlet with the knife in the library 

 

Suppose that a cryptanalyst had managed to find these two keys. Two plausible plaintexts are 

produced. How is the cryptanalyst to decide which is the correct decryption (i.e., which is the 

correct key)? If the actual key were produced in a truly random fashion, then the cryptanalyst 

cannot say that one of these two keys is more likely than the other. Thus, there is no way to 

decide which key is correct and therefore which plaintext is correct. 

In fact, given any plaintext of equal length to the ciphertext, there is a key that produces 

that plaintext. Therefore, if you did an exhaustive search of all possible keys, you would end 

up with many legible plaintexts, with no way of knowing which was the intended plaintext. 

Therefore, the code is unbreakable. The security of the one-time pad is entirely due to 

the randomness of the key. If the stream of characters that constitute the key is truly random, 

then the stream of characters that constitute the ciphertext will be truly random. Thus, there are 

no patterns or regularities that a cryptanalyst can use to attack the ciphertext. 

In theory, we need look no further for a cipher. The one-time pad offers complete security but, 

in practice, has two fundamental difficulties: 

1. There is the practical problem of making large quantities of random keys. Any heavily used 

system might require millions of random characters on a regular basis. Supplying truly random 

characters in this volume is a significant task. 

2. Even more daunting is the problem of key distribution and protection. For every message 

to be sent, a key of equal length is needed by both sender and receiver. Thus, a mammoth key 

distribution problem exists. 

 

Because of these difficulties, the one-time pad is of limited utility, and is useful primarily for 

low bandwidth channels requiring very high security. 

 

1.6 Block Cipher Principles 
A block cipher is an encryption/decryption scheme in which a block of plaintext is 

treated as a whole and used to produce a ciphertext block of equal length. Many block ciphers 

have a Feistel structure. Such a structure consists of a number of identical rounds of processing. 

In each round, a substitution is performed on one half of the data being processed, followed by 

a permutation that interchanges the two halves. The original key is expanded so that a different 

key is used for each round. 

 

Stream Ciphers and Block Ciphers 

A stream cipher is one that encrypts a digital data stream one bit or one byte at a time. 

Examples of classical stream ciphers are the autokeyed Vigenère cipher and the Vernam cipher. 

A block cipher is one in which a block of plaintext is treated as a whole and used to produce 

a ciphertext block of equal length. Typically, a block size of 64 or 128 bits is used. A block 

cipher can be used to achieve the same effect as a stream cipher. 
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Motivation for the Feistel Cipher Structure 
A block cipher operates on a plaintext block of n bits to produce a ciphertext block of n bits. 

There are 2n possible different plaintext blocks and, for the encryption to be reversible (i.e., for 

decryption to be possible), each must produce a unique ciphertext block. Such a transformation 

is called reversible, or nonsingular. The following examples illustrate nonsingular and singular 

transformation for n = 2. 
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In the latter case, a ciphertext of 01 could have been produced by one of two plaintext blocks. 

So if we limit ourselves to reversible mappings, the number of different transformations is 2n!. 

 
Figure 1.8 illustrates the logic of a general substitution cipher for n = 4. A 4-bit input produces 

one of 16 possible input states, which is mapped by the substitution cipher into a unique one of 

16 possible output states, each of which is represented by 4 ciphertext bits. The encryption and 

decryption mappings can be defined by a tabulation, as shown in Table 1.4. This is the most 

general form of block cipher and can be used to define any reversible mapping between 

plaintext and ciphertext. Feistel refers to this as the ideal block cipher, because it allows for the 

maximum number of possible encryption mappings from the plaintext block. 

 

Figure 1.8: General n-bit-n-bit Block Substitution (shown with n = 4) 

Table 1.4. Encryption and Decryption Tables for Substitution Cipher 
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But there is a practical problem with the ideal block cipher. If a small block size, such as n = 

4, is used, then the system is equivalent to a classical substitution cipher. Such systems, as we 

have seen, are vulnerable to a statistical analysis of the plaintext. This weakness is not inherent 

in the use of a substitution cipher but rather results from the use of a small block size. If n is 

sufficiently large and an arbitrary reversible substitution between plaintext and ciphertext is 

allowed, then the statistical characteristics of the source plaintext are masked to such an extent 

that this type of cryptanalysis is infeasible. 

 

An arbitrary reversible substitution cipher (the ideal block cipher) for a large block size is not 

practical, however, from an implementation and performance point of view. For such a 

transformation, the mapping itself constitutes the key. 

Consider again Table 1.4, which defines one particular reversible mapping from plaintext to 

ciphertext for n = 4. The mapping can be defined by the entries in the second column, which 

show the value of the ciphertext for each plaintext block. This, in essence, is the key that 

determines the specific mapping from among all possible mappings. In this case, using this 
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straightforward method of defining the key, the required key length is (4 bits) x (16 rows) = 64 

bits. 

In general, for an n-bit ideal block cipher, the length of the key defined in this fashion is n x 2n 

bits. For a 64-bit block, which is a desirable length to thwart statistical attacks, the 

required key length is 64 x 264 = 270 1021bits. 

In considering these difficulties, Feistel points out that what is needed is an approximation to 

the ideal block cipher system for large n, built up out of components that are easily realizable. 

But before turning to Feistel's approach, let us make one other observation. We could use the 

general block substitution cipher but, to make its implementation tractable, confine ourselves 

to a subset of the possible reversible mappings. 

For example, suppose we define the mapping in terms of a set of linear equations. In 

the case of n = 4, we have 

y1 = k11x1 + k12x2 + k13x3 + k14x4 

y2 = k21x1 + k22x2 + k23x3 + k24x4 

y3 = k31x1 + k32x2 + k33x3 + k34x4 

y4 = k41x1 + k42x2 + k43x3 + k44x4 

where the xi are the four binary digits of the plaintext block, the yi are the four binary digits 

of the ciphertext block, the kij are the binary coefficients, and arithmetic is mod 2. The key size 

is just n2, in this case 16 bits. The danger with this kind of formulation is that it may be 

vulnerable to cryptanalysis by an attacker that is aware of the structure of the algorithm. 

 

1.7 The Feistel Cipher 
Feistel proposed that we can approximate the ideal block cipher by utilizing the concept 

of a product cipher, which is the execution of two or more simple ciphers in sequence in such 

a way that the final result or product is cryptographically stronger than any of the component 

ciphers. The essence of the approach is to develop a block cipher with a key length of k bits 

and a block length of n bits, allowing a total of 2k possible transformations, rather than the 2n! 

transformations available with the ideal block cipher. 

In particular, Feistel proposed the use of a cipher that alternates substitutions and 

permutations. In fact, this is a practical application of a proposal by Claude Shannon to develop 

a product cipher that alternates confusion and diffusion functions. We look next at these 

concepts of diffusion and confusion and then present the Feistel cipher. But first, it is worth 

commenting on this remarkable fact: The Feistel cipher structure, which dates back over a 

quarter century and which, in turn, is based on Shannon's proposal of 1945, is the structure used 

by many significant symmetric block ciphers currently in use. 

 
1.7.1 Diffusion and Confusion 

The terms diffusion and confusion were introduced by Claude Shannon to capture the two basic 

building blocks for any cryptographic system. 

Shannon's concern was to thwart cryptanalysis based on statistical analysis. The reasoning is 

as follows. Assume the attacker has some knowledge of the statistical characteristics of the 

plaintext. For example, in a human-readable message in some language, the frequency 

distribution of the various letters may be known. Or there may be words or phrases likely to 

appear in the message (probable words). If these statistics are in any way reflected in the 
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ciphertext, the cryptanalyst may be able to deduce the encryption key, or part of the key, or at 

least a set of keys likely to contain the exact key. In what Shannon refers to as a strongly ideal 

cipher, all statistics of the ciphertext are independent of the particular key used. 

Shannon suggests two methods for frustrating statistical cryptanalysis: diffusion and 

confusion. In diffusion, the statistical structure of the plaintext is dissipated into long-range 

statistics of the ciphertext. This is achieved by having each plaintext digit affect the value of 

many ciphertext digits; generally this is equivalent to having each ciphertext digit be affected 

by many plaintext digits. An example of diffusion is to encrypt a message M = m1, m2, m3,... 

of characters with an averaging operation: 

 

adding k successive letters to get a ciphertext letter yn. One can show that the statistical 

structure of the plaintext has been dissipated. Thus, the letter frequencies in the ciphertext will 

be more nearly equal than in the plaintext; the digram frequencies will also be more nearly 

equal, and so on. In a binary block cipher, diffusion can be achieved by repeatedly performing 

some permutation on the data followed by applying a function to that permutation; the effect 

is that bits from different positions in the original plaintext contribute to a single bit of 

ciphertext. 

Every block cipher involves a transformation of a block of plaintext into a block of ciphertext, 

where the transformation depends on the key. The mechanism of diffusion seeks to make the 

statistical relationship between the plaintext and ciphertext as complex as possible in order to 

thwart attempts to deduce the key. 

 
On the other hand, confusion seeks to make the relationship between the statistics of the 

ciphertext and the value of the encryption key as complex as possible, again to thwart attempts 

to discover the key. Thus, even if the attacker can get some handle on the statistics of the 

ciphertext, the way in which the key was used to produce that ciphertext is so complex as to 

make it difficult to deduce the key. This is achieved by the use of a complex substitution 

algorithm. In contrast, a simple linear substitution function would add little confusion. 

 
1.7.2 Feistel Cipher Structure 

 
Figure 1.9 depicts the structure proposed by Feistel. The inputs to the encryption algorithm are 

a plaintext block of length 2w bits and a key K. The plaintext block is divided into two halves, 

L0 and R0. The two halves of the data pass through n rounds of processing and then combine 

to produce the ciphertext block. Each round i has as inputs Li-1 and Ri-1, derived from the 

previous round, as well as a subkey Ki, derived from the overall K. In general, the subkeys Ki 

are different from K and from each other. 
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Figure 1.9 : Feistel Encryption and Decryption (16 rounds) 

 
All rounds have the same structure. A substitution is performed on the left half of the data. 

This is done by applying a round function F to the right half of the data and then taking the 

exclusive-OR of the output of that function and the left half of the data. The round function has 

the same general structure for each round but is parameterized by the round subkey Ki. 

Following this substitution, a permutation is performed that consists of the interchange of the 

two halves of the data. This structure is a particular form of the substitution-permutation 

network (SPN) proposed by Shannon. 

 
The exact realization of a Feistel network depends on the choice of the following parameters 

and design features: 

● Block size: Larger block sizes mean greater security (all other things being equal) but 

reduced encryption/decryption speed for a given algorithm. The greater security is achieved by 

greater diffusion Traditionally, a block size of 64 bits has been considered a reasonable 
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tradeoff and was nearly universal in block cipher design. However, the new AES uses a 128- 

bit block size. 

● Key size: Larger key size means greater security but may decrease encryption/decryption 

speed. The greater security is achieved by greater resistance to brute-force attacks and greater 

confusion. Key sizes of 64 bits or less are now widely considered to be inadequate, and 128 

bits has become a common size. 

● Number of rounds: The essence of the Feistel cipher is that a single round offers inadequate 

security but that multiple rounds offer increasing security. A typical size is 16 rounds. 

● Subkey generation algorithm: Greater complexity in this algorithm should lead to greater 

difficulty of cryptanalysis. 

● Round function: Again, greater complexity generally means greater resistance to 

cryptanalysis. 

 
There are two other considerations in the design of a Feistel cipher: 

● Fast software encryption/decryption: In many cases, encryption is embedded in 

applications or utility functions in such a way as to preclude a hardware implementation. 

Accordingly, the speed of execution of the algorithm becomes a concern. 

● Ease of analysis: Although we would like to make our algorithm as difficult as possible to 

cryptanalyze, there is great benefit in making the algorithm easy to analyze. That is, if the 

algorithm can be concisely and clearly explained, it is easier to analyze that algorithm for 

cryptanalytic vulnerabilities and therefore develop a higher level of assurance as to its 

strength. DES, for example, does not have an easily analyzed functionality. 

 
1.7.3 Feistel Decryption Algorithm 

 
The process of decryption with a Feistel cipher is essentially the same as the encryption process. 

The rule is as follows: Use the ciphertext as input to the algorithm, but use the subkeys Ki in 

reverse order. That is, use Kn in the first round, Kn-1 in the second round, and so on until K1 

is used in the last round. This is a nice feature because it means we need not implement two 

different algorithms, one for encryption and one for decryption. 

To see that the same algorithm with a reversed key order produces the correct result, 

consider Figure 1.9, which shows the encryption process going down the left-hand side and the 

decryption process going up the right-hand side for a 16-round algorithm (the result would be 

the same for any number of rounds). For clarity, we use the notation LEi and REi for data 

traveling through the encryption algorithm and LDi and RDi for data traveling through the 

decryption algorithm. The diagram indicates that, at every round, the intermediate value of 

the decryption process is equal to the corresponding value of the encryption process with the 

two halves of the value swapped. To put this another way, let the output of the ith encryption 

round be LEi||REi (Li concatenated with Ri). Then the corresponding input to the (16 i) th 

decryption round is REi||LEi or, equivalently, RD16- i||LD16-i. 

Let us walk through Figure 1.9 to demonstrate the validity of the preceding assertions. 
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After the last iteration of the encryption process, the two halves of the output are swapped, so 

that the ciphertext is RE16||LE16. The output of that round is the ciphertext. Now take that 

ciphertext and use it as input to the same algorithm. The input to the first round is RE16||LE16, 

which is equal to the 32-bit swap of the output of the sixteenth round of the encryption process. 

Now we would like to show that the output of the first round of the decryption process is equal 

to a 32- bit swap of the input to the sixteenth round of the encryption process. 

 
First, consider the encryption process. 

We see that 

LE16 = RE15 

RE16 = LE15 x F(RE15, K16) 

 
On the decryption side, 

LD1 = RD0 = LE16 = RE15 

RD1 = LD0 x F(RD0, K16) 

= RE16 x F(RE15, K16) 

= [LE15 x F(RE15, K16)] x F(RE15, K16) 

 
The XOR has the following properties: 

[A x B] x C = A x [B x C] 

D x D = 0 

E x 0 = E 

Thus, we have LD1 = RE15 and RD1 = LE15. Therefore, the output of the first round of the 

decryption process is LE15||RE15, which is the 32-bit swap of the input to the sixteenth round 

of the encryption. 

This correspondence holds all the way through the 16 iterations, as is easily shown. We can 

cast this process in general terms. For the ith iteration of the encryption algorithm, 

LEi = REi-1 

REi =LEi-1 x F(REi-1, Ki) 

Rearranging terms, 

REi-1 = LEi 

LEi-1 = REi x F(REi-1, Ki2 = REi x F(LEi, Ki) 

Thus, we have described the inputs to the ith iteration as a function of the outputs, and these 

equations confirm the assignments shown in the right-hand side of Figure 1.9. 

Finally, we see that the output of the last round of the decryption process is RE0||LE0. A 32- 

bit swap recovers the original plaintext, demonstrating the validity of the Feistel decryption 

process. 

Note that the derivation does not require that F be a reversible function. To see this, take a 

limiting case in which F produces a constant output (e.g., all ones) regardless of the values of 

its two arguments. The equations still hold. 
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1.8 The Data Encryption Standard 
The most widely used encryption scheme is based on the Data Encryption Standard (DES) 

adopted in 1977 by the National Bureau of Standards, now the National Institute of Standards 

and Technology (NIST), as Federal Information Processing Standard 46 (FIPS PUB 46). The 

algorithm itself is referred to as the Data Encryption Algorithm (DEA). 

 
For DES, data are encrypted in 64-bit blocks using a 56-bit key. The algorithm transforms 64-

bit input in a series of steps into a 64-bit output. The same steps, with the same key, are used 

to reverse the encryption. The DES enjoys widespread use. It has also been the subject of 

much controversy concerning how secure the DES is. To appreciate the nature of the 

controversy, let us quickly review the history of the DES. 

In the late 1960s, IBM set up a research project in computer cryptography led by Horst Feistel. 

The project concluded in 1971 with the development of an algorithm with the designation 

LUCIFER, which was sold to Lloyd's of London for use in a cash-dispensing system, also 

developed by IBM. 

 
LUCIFER is a Feistel block cipher that operates on blocks of 64 bits, using a key size of 128 

bits. Because of the promising results produced by the LUCIFER project, IBM embarked on 

an effort to develop a marketable commercial encryption product that ideally could be 

implemented on a single chip. The effort was headed by Walter Tuchman and Carl Meyer, and 

it involved not only IBM researchers but also outside consultants and technical advice from 

NSA. The outcome of this effort was a refined version of LUCIFER that was more resistant to 

cryptanalysis but that had a reduced key size of 56 bits, to fit on a single chip. 

 
In 1973, the National Bureau of Standards (NBS) issued a request for proposals for a national 

cipher standard. IBM submitted the results of its Tuchman-Meyer project. This was by far the 

best algorithm proposed and was adopted in 1977 as the Data Encryption Standard. 

 
Before its adoption as a standard, the proposed DES was subjected to intense criticism, which 

has not subsided to this day. Two areas drew the critics' fire. First, the key length in IBM's 

original LUCIFER algorithm was 128 bits, but that of the proposed system was only 56 bits, 

an enormous reduction in key size of 72 bits. Critics feared that this key length was too short 

to withstand brute-force attacks. The second area of concern was that the design criteria for the 

internal structure of DES, the S-boxes, were classified. Thus, users could not be sure that the 

internal structure of DES was free of any hidden weak points that would enable NSA to 

decipher messages without benefit of the key. Subsequent events, particularly the recent work 

on differential cryptanalysis, seem to indicate that DES has a very strong internal structure. 

Furthermore, according to IBM participants, the only changes that were made to the proposal 

were changes to the S-boxes, suggested by NSA, that removed vulnerabilities identified in 

the course of the evaluation process. 

Whatever the merits of the case, DES has flourished and is widely used, especially in financial 

applications. In 1994, NIST reaffirmed DES for federal use for another five years; NIST 

recommended the use of DES for applications other than the protection of classified 
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information. In 1999, NIST issued a new version of its standard (FIPS PUB 46-3) that indicated 

that DES should only be used for legacy systems and that triple DES (which in essence involves 

repeating the DES algorithm three times on the plaintext using two or three different keys to 

produce the ciphertext) be used. We study triple DES. Because the underlying encryption and 

decryption algorithms are the same for DES and triple DES, it remains important to understand 

the DES cipher. 

 

1.8.1 DES Encryption 

The overall scheme for DES encryption is illustrated in Figure 1.10. As with any encryption 

scheme, there are two inputs to the encryption function: the plaintext to be encrypted and the 

key. In this case, the plaintext must be 64 bits in length and the key is 56 bits in length. 

 

Figure 1.10: General description of DES encryption algorithm 

Looking at the left-hand side of the figure, we can see that the processing of the plaintext 

proceeds in three phases. First, the 64-bit plaintext passes through an initial permutation (IP) 

that rearranges the bits to produce the permuted input. This is followed by a phase consisting 
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of 16 rounds of the same function, which involves both permutation and substitution functions. 

The output of the last (sixteenth) round consists of 64 bits that are a function of the input 

plaintext and the key. The left and right halves of the output are swapped to produce the 

preoutput. Finally, the preoutput is passed through a permutation (IP-1) that is the inverse of 

the initial permutation function, to produce the 64-bit ciphertext. With the exception of the 

initial and final permutations, DES has the exact structure of a Feistel cipher. 

 

The right-hand portion of Figure 1.10 shows the way in which the 56-bit key is used. Initially, 

the key is passed through a permutation function. Then, for each of the 16 rounds, a subkey 

(Ki) is produced by the combination of a left circular shift and a permutation. The permutation 

function is the same for each round, but a different subkey is produced because of the repeated 

shifts of the key bits. 

 
Initial Permutation 

The initial permutation and its inverse are defined by tables, as shown in Tables 1.5a and 1.5b, 

respectively. The tables are to be interpreted as follows. The input to a table consists of 64 bits 

numbered from 1 to 64. The 64 entries in the permutation table contain a permutation of the 

numbers from 1 to 64. Each entry in the permutation table indicates the position of a numbered 

input bit in the output, which also consists of 64 bits. 

 
Table 1.5. Permutation Tables for DES 
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Details of Single Round 

Figure 1.11 shows the internal structure of a single round. Again, begin by focusing on the left-

hand side of the diagram. The left and right halves of each 64-bit intermediate value are treated 

as separate 32- bit quantities, labeled L (left) and R (right). As in any classic Feistel cipher, the 

overall processing at each round can be summarized in the following formulas: 

Li = Ri-1 

Ri = Li-1 x F(Ri-1, Ki) 
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Figure 1.11: Single Round of DES Algorithm 

The round key Ki is 48 bits. The R input is 32 bits. This R input is first expanded to 48 bits by 

using a table that defines a permutation plus an expansion that involves duplication of 16 of the 

R bits (Table 1.5c). The resulting 48 bits are XORed with Ki. This 48-bit result passes through 

a substitution function that produces a 32-bit output, which is permuted as defined by Table 

1.5d. The role of the S-boxes in the function F is illustrated in Figure 1.12. The substitution 

consists of a set of eight S-boxes, each of which accepts 6 bits as input and produces 4 bits as 

output. These transformations are defined in Table 1.6, which is interpreted as follows: The first 

and last bits of the input to box Si form a 2-bit binary number to select one of four substitutions 

defined by the four rows in the table for Si. The middle four bits select one of the sixteen 

columns. The decimal value in the cell selected by the row and column is then converted to its 

4-bit representation to produce the output. For example, in S1 for input 011001, the row is 01 

(row 1) and the column is 1100 (column 12). The value in row 1, column 12 is 9, so the output 

is 1001. 
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Figure 1.12: Calculation of F(R, K) 

Table 1.6: Definition of DES S-Boxes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Each row of an S-box defines a general reversible substitution. The operation of the S-boxes 

is worth further comment. Ignore for the moment the contribution of the key (Ki). If you 
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examine the expansion table, you see that the 32 bits of input are split into groups of 4 bits, 

and then become groups of 6 bits by taking the outer bits from the two adjacent groups. For 

example, if part of the input word is 

... efgh ijkl mnop ... 

this becomes 

... defghi hijklm lmnopq ... 

The outer two bits of each group select one of four possible substitutions (one row of an S- 

box). Then a 4-bit output value is substituted for the particular 4-bit input (the middle four input 

bits). The 32-bit output from the eight S-boxes is then permuted, so that on the next round the 

output from each S-box immediately affects as many others as possible. 

 
Key Generation 

Returning to Figures 1.10 and 1.11, we see that a 64-bit key is used as input to the 

algorithm. The bits of the key are numbered from 1 through 64; every eighth bit is ignored, as 

indicated by the lack of shading in Table 1.7a. The key is first subjected to a permutation 

governed by a table labeled Permuted Choice One (Table 1.7b). The resulting 56-bit key is then 

treated as two 28-bit quantities, labeled C0 and D0. At each round, Ci-1 and Di-1 are separately 

subjected to a circular left shift, or rotation, of 1 or 2 bits, as governed by Table 1.7d. These 

shifted values serve as input to the next round. They also serve as input to Permuted Choice 

Two (Table 1.7c), which produces a 48-bit output that serves as input to the function F(Ri-1, 

Ki). 

Table 1.7: DES Key Schedule Calculation 
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DES Decryption 

As with any Feistel cipher, decryption uses the same algorithm as encryption, except that the 

application of the subkeys is reversed. 

 
The Avalanche Effect 

A desirable property of any encryption algorithm is that a small change in either the plaintext 

or the key should produce a significant change in the ciphertext. In particular, a change in one 

bit of the plaintext or one bit of the key should produce a change in many bits of the 
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ciphertext. If the change were small, this might provide a way to reduce the size of the 

plaintext or key space to be searched. 

DES exhibits a strong avalanche effect. Table 1.8 shows some results taken from. In Table 

1.8a, two plaintexts that differ by one bit were used: 

 
Table 1.8 : Avalanche effect in DES 
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The Table 1.8a shows that after just three rounds, 21 bits differ between the two blocks. On 

completion, the two ciphertexts differ in 34 bit positions. Table 1.8b shows a similar test in 

which a single plaintext is input: 
 

 

1.9 The Strength of DES 
Since its adoption as a federal standard, there have been lingering concerns about the level of 

security provided by DES. These concerns, by and large, fall into two areas: key size and the 

nature of the algorithm. 

The Use of 56-Bit Keys 

With a key length of 56 bits, there are 2^56 possible keys, which is approximately 7.2 x 10^16. 

Thus, on the face of it, a brute-force attack appears impractical. Assuming that, on average, 

half the key space has to be searched, a single machine performing one DES encryption per 

microsecond would take more than a thousand years to break the cipher. 

However, the assumption of one encryption per microsecond is overly conservative. As far 

back as 1977, Diffie and Hellman postulated that the technology existed to build a parallel 

machine with 1 million encryption devices, each of which could perform one encryption per 

microsecond. This would bring the average search time down to about 10 hours. The authors 

estimated that the cost would be about $20 million in 1977 dollars. 

DES finally and definitively proved insecure in July 1998, when the Electronic Frontier 

Foundation (EFF) announced that it had broken a DES encryption using a special-purpose 

"DES cracker" machine that was built for less than $250,000. The attack took less than three 

days. The EFF has published a detailed description of the machine, enabling others to build 

their own cracker. And, of course, hardware prices will continue to drop as speeds increase, 

making DES virtually worthless. 

It is important to note that there is more to a key-search attack than simply running through 

all possible keys. Unless known plaintext is provided, the analyst must be able to recognize 

plaintext as plaintext. If the message is just plain text in English, then the result pops out easily, 

although the task of recognizing English would have to be automated. If the text message has 

been compressed before encryption, then recognition is more difficult. And if the message is 

some more general type of data, such as a numerical file, and this has been compressed, the 

problem becomes even more difficult to automate. Thus, to supplement the brute-force 

approach, some degree of knowledge about the expected plaintext is needed, and some means 

of automatically distinguishing plaintext from garble is also needed. The EFF approach 

addresses this issue as well and introduces some automated techniques that would be effective 

in many contexts. 
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The Nature of the DES Algorithm 

Another concern is the possibility that cryptanalysis is possible by exploiting the characteristics 

of the DES algorithm. The focus of concern has been on the eight substitution tables, or S-

boxes, that are used in each iteration. Because the design criteria for these boxes, and indeed 

for the entire algorithm, were not made public, there is a suspicion that the boxes were 

constructed in such a way that cryptanalysis is possible for an opponent who knows the 

weaknesses in the S-boxes. This assertion is tantalizing, and over the years a number of 

regularities and unexpected behaviors of the S-boxes have been discovered. Despite this, no 

one has so far succeeded in discovering the supposed fatal weaknesses in the S-boxes. 

 
Timing Attacks 

A timing attack is one in which information about the key or the plaintext is obtained by 

observing how long it takes a given implementation to perform decryptions on various 

ciphertexts. A timing attack exploits the fact that an encryption or decryption algorithm often 

takes slightly different amounts of time on different inputs.The Hamming weight (number of 

bits equal to one) of the secret key. This is a long way from knowing the actual key, but it is an 

intriguing first step. The authors conclude that DES appears to be fairly resistant to a successful 

timing attack but suggest some avenues to explore. Although this is an interesting line of attack, 

it so far appears unlikely that this technique will ever be successful against DES or more 

powerful symmetric ciphers such as triple DES and AES. 

 

1.10 Block Cipher Design Principles 
Number of Rounds 

The cryptographic strength of a Feistel cipher derives from three aspects of the design: the 

number of rounds, the function F, and the key schedule algorithm. Let us look first at the choice 

of the number of rounds. 

The greater the number of rounds, the more difficult it is to perform cryptanalysis, even for a 

relatively weak F. In general, the criterion should be that the number of rounds is chosen so 

that known cryptanalytic efforts require greater effort than a simple brute-force key search 

attack. This criterion was certainly used in the design of DES. Schneier observes that for 16- 

round DES, a differential cryptanalysis attack is slightly less efficient than brute force: the 

differential cryptanalysis attack requires 2^55.1 operations, whereas brute force requires 2^55. 

If DES had 15 or fewer rounds, differential cryptanalysis would require less effort than brute-

force key search. 

This criterion is attractive because it makes it easy to judge the strength of an algorithm and 

to compare different algorithms. In the absence of a cryptanalytic breakthrough, the strength 

of any algorithm that satisfies the criterion can be judged solely on key length. 

 
Design of Function F 

The heart of a Feistel block cipher is the function F. As we have seen, in DES, this function 

relies on the use of S-boxes. This is also the case for most other symmetric block ciphers. 

However, we can make some general comments about the criteria for designing F. After that, 

we look specifically at S-box design. 
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Design Criteria for F 

The function F provides the element of confusion in a Feistel cipher. Thus, it must be difficult 

to "unscramble" the substitution performed by F. One obvious criterion is that F be nonlinear, 

as we discussed previously. The more nonlinear F, the more difficult any type of cryptanalysis 

will be. There are several measures of nonlinearity, which are beyond the scope of this book. In 

rough terms, the more difficult it is to approximate F by a set of linear equations, the more 

nonlinear F is. Several other criteria should be considered in designing F. We would like the 

algorithm to have good avalanche properties. Recall that, in general, this means that a change 

in one bit of the input should produce a change in many bits of the output. A more stringent 

version of this is the strict avalanche criterion (SAC), which states that any output bit j of an 

S-box should change with probability 1/2 when any single input bit i is inverted for all i, j. 

Although SAC is expressed in terms of Sboxes, a similar criterion could be applied to F as a 

whole. This is important when considering designs 

that do not include S-boxes. 

Another criterion proposed is the bit independence criterion (BIC), which states that output 

bits j and k should change independently when any single input bit i is inverted, for all i, j, and 

k. The SAC and BIC criteria appear to strengthen the effectiveness of the confusion function. 

 
Key Schedule Algorithm 

A final area of block cipher design, and one that has received less attention than S-box design, 

is the key schedule algorithm. With any Feistel block cipher, the key is used to generate one 

subkey for each round. In general, we would like to select subkeys to maximize the difficulty 

of deducing individual subkeys and the difficulty of working back to the main key. No general 

principles for this have yet been promulgated. 

Hall suggests that, at minimum, the key schedule should guarantee key/ciphertext Strict 

Avalanche Criterion and Bit Independence Criterion. 
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Module-2: 

Public-Key Cryptography and RSA, Other Public-Key 

Cryptosystems 
 

 

 

The development of public-key cryptography is the greatest and perhaps the only true 

revolution in the entire history of cryptography. From its earliest beginnings to modern times, 

virtually all cryptographic systems have been based on the elementary tools of substitution and 

permutation. After millennia of working with algorithms that could essentially be calculated 

by hand, a major advance in symmetric cryptography occurred with the development of the 

rotor encryption/decryption machine. 

The electromechanical rotor enabled the development of fiendishly complex cipher 

systems. With the availability of computers, even more complex systems were devised, the 

most prominent of which was the Lucifer effort at IBM that culminated in the Data 

Encryption Standard (DES). But both rotor machines and DES, although representing 

significant advances, still relied on the bread-and-butter tools of substitution and permutation. 

Public-key cryptography provides a radical departure from all that has gone before. 

For one thing, public key algorithms are based on mathematical functions rather than on 

substitution and permutation. More important, public-key cryptography is asymmetric, 

involving the use of two separate keys, in contrast to symmetric encryption, which uses only 

one key. The use of two keys has profound consequences in the areas of confidentiality, key 

distribution, and authentication. 

Before proceeding, we should mention several common misconceptions concerning 

public-key encryption. One such misconception is that public-key encryption is more secure 

from cryptanalysis than is symmetric encryption. In fact, the security of any encryption scheme 

depends on the length of the key and the computational work involved in breaking a cipher. 

There is nothing in principle about either symmetric or public-key encryption that makes one 

superior to another from the point of view of resisting cryptanalysis. 

Second misconception is that public-key encryption is a general-purpose technique that 

has made symmetric encryption obsolete. On the contrary, because of the computational 

overhead of current public-key encryption schemes, there seems no foreseeable likelihood that 

symmetric encryption will be abandoned. As one of the inventors of public-key encryption has 

put it "the restriction of public-key cryptography to key management and signature applications 

is almost universally accepted." 

 

2.1 Principles of Public-Key Cryptosystems 
The concept of public-key cryptography evolved from an attempt to attack two of the 

most difficult problems associated with symmetric encryption. The first problem is that of 

key distribution. 

Key distribution under symmetric encryption requires either 
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(1) that two communicants already share a key, which somehow has been distributed to them; 

or 

(2) the use of a key distribution center. 

Whitfield Diffie, one of the discoverers of public-key encryption (along with Martin 

Hellman, both at Stanford University at the time), reasoned that this second requirement 

negated the very essence of cryptography: the ability to maintain total secrecy over your own 

communication. 

As Diffie put it , "what good would it do after all to develop impenetrable 

cryptosystems, if their users were forced to share their keys with a KDC that could be 

compromised by either burglary or subpoena?" 

The second problem that Diffie pondered, and one that was apparently unrelated to 

the first was that of "digital signatures." If the use of cryptography was to become widespread, 

not just in military situations but for commercial and private purposes, then electronic messages 

and documents would need the equivalent of signatures used in paper documents. That is, could 

a method be devised that would stipulate, to the satisfaction of all parties, that a digital message 

had been sent by a particular person? This is a somewhat broader requirement than that of 

authentication, and its characteristics and ramifications. 

 

2.1.1 Public-Key Cryptosystems 

Asymmetric algorithms rely on one key for encryption and a different but related key 

for decryption. 

These algorithms have the following important characteristic: 

● It is computationally infeasible to determine the decryption key given only knowledge of 

the cryptographic algorithm and the encryption key. 

In addition, some algorithms, such as RSA, also exhibit the following characteristic: 

● Either of the two related keys can be used for encryption, with the other used for 

decryption. 

 
A public-key encryption scheme has six ingredients 

• Plaintext: This is the readable message or data that is fed into the algorithm as input. 

• Encryption algorithm: The encryption algorithm performs various transformations on 

the plaintext. 

• Public and private keys: This is a pair of keys that have been selected so that if one 

is used for encryption, the other is used for decryption. The exact transformations 

performed by the algorithm depend on the public or private key that is provided as 

input. 

• Ciphertext: This is the scrambled message produced as output. It depends on the 

plaintext and the key. For a given message, two different keys will produce two 

different ciphertexts. 

• Decryption algorithm: This algorithm accepts the ciphertext and the matching key and 

produces the original plaintext. 
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Figure 2.1: Public-Key Cryptography 

 
The essential steps are the following: 

1. Each user generates a pair of keys to be used for the encryption and decryption of 

messages. 

2. Each user places one of the two keys in a public register or other accessible file. This is the 

public key. The companion key is kept private. As Figure 2.1a suggests, each user maintains 

a collection of public keys obtained from others. 

3. If Bob wishes to send a confidential message to Alice, Bob encrypts the message using 

Alice's public key. 

4. When Alice receives the message, she decrypts it using her private key. No other recipient 

can decrypt the message because only Alice knows Alice's private key. 

With this approach, all participants have access to public keys, and private keys are 

generated locally by each participant and therefore need never be distributed. As long as a 
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user's private key remains protected and secret, incoming communication is secure. At any 

time, a system can change its private key and publish the companion public key to replace its 

old public key. 

Table 2.1 summarizes some of the important aspects of symmetric and public-key 

encryption. To discriminate between the two, we refer to the key used in symmetric encryption 

as a secret key. The two keys used for asymmetric encryption are referred to as the public 

key and the private key. Invariably, the private key is kept secret, but it is referred to as a 

private key rather than a secret key to avoid confusion with symmetric encryption. 

 
Table 2.1: Conventional and Public-Key Encryption 

Let us take a closer look at the essential elements of a public-key encryption scheme, 

using Figure 2.2. There is some source A that produces a message in plaintext, X =[X1, X2,..., 

XM,]. The M elements of X are letters in some finite alphabet. The message is intended for 

destination B. B generates a related pair of keys: a public key, PUb, and a private key, PUb. 

PUb is known only to B, whereas PUb is publicly available and therefore accessible by A. 
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Figure 2.2: Public-Key Cryptosystem: Confidentiality 

 
With the message X and the encryption key PUb as input, A forms the ciphertext 

Y = [Y1, Y2,..., YN]: 

Y = E(PUb, X) 

The intended receiver, in possession of the matching private key, is able to invert the 

transformation: 

X = D(PRb, Y) 

An adversary, observing Y and having access to PUb but not having access to PRb or X, must 

attempt to recover X and/or PRb. It is assumed that the adversary does have knowledge of the 

encryption (E) and decryption (D) algorithms. 

If the adversary is interested only in this particular message, then the focus of effort is 

to recover X, by generating a plaintext estimate Often, however, the adversary is interested in 

being able to read future messages as well, in which case an attempt is made to recover 

PRb by generating an estimate . 

We mentioned earlier that either of the two related keys can be used for encryption, 

with the other being used for decryption. This enables a rather different cryptographic scheme 

to be implemented. Whereas the scheme illustrated in Figure 2.2 provides confidentiality, 

Figures 2.1b and 2.3 show the use of public-key encryption to provide authentication: 

Y = E(PRa, X) 

Y = E(PUa, Y) 
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Figure 2.3: Public-Key Cryptosystem: Authentication 

 
In this case, A prepares a message to B and encrypts it using A's private key before 

transmitting it. B can decrypt the message using A's public key. Because the message was 

encrypted using A's private key, only A could have prepared the message. Therefore, the entire 

encrypted message serves as a digital signature. In addition, it is impossible to alter the message 

without access to A's private key, so the message is authenticated both in terms of source and 

in terms of data integrity. 

In the preceding scheme, the entire message is encrypted, which, although validating 

both author and contents, requires a great deal of storage. Each document must be kept in 

plaintext to be used for practical purposes. A copy also must be stored in ciphertext so that 

the origin and contents can be verified in case of a dispute. A more efficient way of achieving 

the same results is to encrypt a small block of bits that is a function of the document. Such a 

block, called an authenticator, must have the property that it is infeasible to change the 

document without changing the authenticator. If the authenticator is encrypted with the sender's 

private key, it serves as a signature that verifies origin, content, and sequencing. 

It is important to emphasize that the encryption process depicted in Figures 2.1b and 

2.3 does not provide confidentiality. That is, the message being sent is safe from alteration 

but not from eavesdropping. This is obvious in the case of a signature based on a portion of the 

message, because the rest of the message is transmitted in the clear. Even in the case of 

complete encryption, as shown in Figure 2.3, there is no protection of confidentiality because 

any observer can decrypt the message by using the sender's public key. 

It is possible to provide both the authentication function and confidentiality by a double 

use of the public-key scheme (Figure 2.4): 

Z = E(PUb, E(PRa, X)) 

X = D(PUa, E(PRb, Z)) 
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Figure 2.4: Public-Key Cryptosystem: Authentication and Secrecy 

In this case, we begin as before by encrypting a message, using the sender's private key. 

This provides the digital signature. Next, we encrypt again, using the receiver's public key. The 

final ciphertext can be decrypted only by the intended receiver, who alone has the matching 

private key. Thus, confidentiality is provided. The disadvantage of this approach is that the 

public-key algorithm, which is complex, must be exercised four times rather than two in each 

communication. 

 

2.1.2 Applications for Public-Key Cryptosystems 

Before proceeding, we need to clarify one aspect of public-key cryptosystems that is 

otherwise likely to lead to confusion. Public-key systems are characterized by the use of a 

cryptographic algorithm with two keys, one held private and one available publicly. Depending 

on the application, the sender uses either the sender's private key or the receiver's public key, 

or both, to perform some type of cryptographic function. In broad terms, we can classify the 

use of public-key cryptosystems into three categories: 

● Encryption/decryption: The sender encrypts a message with the recipient's public key. 

● Digital signature: The sender "signs" a message with its private key. Signing is achieved by 

a cryptographic algorithm applied to the message or to a small block of data that is a function 

of the message. 

● Key exchange: Two sides cooperate to exchange a session key. Several different approaches 

are possible, involving the private key(s) of one or both parties. 

 
Some algorithms are suitable for all three applications, whereas others can be used only for one 

or two of these applications. Table 2.2 indicates the applications supported by the algorithms. 
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Table 2.2: Applications for Public-Key Cryptosystems 

 
2.1.3 Requirements for Public-Key Cryptography 

The cryptosystem illustrated in Figures 9.2 through 9.4 depends on a cryptographic algorithm 

based on two related keys. Diffie and Hellman postulated this system without demonstrating 

that such algorithms exist. However, they did lay out the conditions that such algorithms must 

fulfil: 

1. It is computationally easy for a party B to generate a pair (public key PUb, private key 

PRb). 

2. It is computationally easy for a sender A, knowing the public key and the message to be 

encrypted, M, to generate the corresponding ciphertext: C = E(PUb, M) 

3. It is computationally easy for the receiver B to decrypt the resulting ciphertext using the 

private key to recover the original message: M = D(PRb, C) = D[PRb, E(PUb, M)] 

4. It is computationally infeasible for an adversary, knowing the public key, PUb, to 

determine the private key, PRb. 

5. It is computationally infeasible for an adversary, knowing the public key, PUb, and a 

ciphertext, C, to recover the original message, M. 

We can add a sixth requirement that, although useful, is not necessary for all public-key 

applications: 

6. The two keys can be applied in either order: 

M = D[PUb, E(PRb, M)] = D[PRb, E(PUb, M)] 

These are formidable requirements, as evidenced by the fact that only a few algorithms (RSA, 

elliptic curve cryptography, Diffie-Hellman, DSS) have received widespread acceptance in the 

several decades since the concept of public-key cryptography was proposed. 

 
Before elaborating on why the requirements are so formidable, let us first recast them. The 

requirements boil down to the need for a trap-door one-way function. A one-way function is 

one that maps a domain into a range such that every function value has a unique inverse, with 

the condition that the calculation of the function is easy whereas the calculation of the inverse 

is infeasible: 

Y = f(X) easy 

X = f1(X) infeasible 

Generally, easy is defined to mean a problem that can be solved in polynomial time as a 

function of input length. Thus, if the length of the input is n bits, then the time to compute the 

function is proportional to na where a is a fixed constant. Such algorithms are said to belong 

to the class P. The term infeasible is a much fuzzier concept. In general, we can say a problem 

is infeasible if the effort to solve it grows faster than polynomial time as a function 
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of input size. For example, if the length of the input is n bits and the time to compute the 

function is proportional to 2n, the problem is considered infeasible. Unfortunately, it is difficult 

to determine if a particular algorithm exhibits this complexity. 

Furthermore, traditional notions of computational complexity focus on the worst-case 

or average-case complexity of an algorithm. These measures are inadequate for cryptography, 

which requires that it be infeasible to invert a function for virtually all inputs, not for the worst 

case or even average case. 

We now turn to the definition of a trap-door one-way function, which is easy to calculate in 

one direction and infeasible to calculate in the other direction unless certain additional 

information is known. With the additional information the inverse can be calculated in 

polynomial time. We can summarize as follows: A trap-door one-way function is a family of 

invertible functions fk, such that 

 

Thus, the development of a practical public-key scheme depends on discovery of a suitable 

trap-door one-way function. 

 

2.1.4 Public-Key Cryptanalysis 

As with symmetric encryption, a public-key encryption scheme is vulnerable to a brute-

force attack. The countermeasure is the same: Use large keys. However, there is a tradeoff to 

be considered. Public-key systems depend on the use of some sort of invertible mathematical 

function. The complexity of calculating these functions may not scale linearly with the number 

of bits in the key but grow more rapidly than that. Thus, the key size must be large enough to 

make brute-force attack impractical but small enough for practical encryption and decryption. 

In practice, the key sizes that have been proposed do make brute-force attack impractical but 

result in encryption/decryption speeds that are too slow for general-purpose use. Instead, as 

was mentioned earlier, public-key encryption is currently confined to key management and 

signature applications. 

Another form of attack is to find some way to compute the private key given the public 

key. To date, it has not been mathematically proven that this form of attack is infeasible for a 

particular public-key algorithm. Thus, any given algorithm, including the widely used RSA 

algorithm, is suspect. The history of cryptanalysis shows that a problem that seems insoluble 

from one perspective can be found to have a solution if looked at in an entirely different way. 

Finally, there is a form of attack that is peculiar to public-key systems. This is, in 

essence, a probable message attack. Suppose, for example, that a message were to be sent that 

consisted solely of a 56-bit DES key. An adversary could encrypt all possible 56-bit DES 

keys using the public key and could discover the encrypted key by matching the transmitted 

ciphertext. Thus, no matter how large the key size of the public-key scheme, the attack is 

reduced to a brute-force attack on a 56-bit key. This attack can be thwarted by appending some 

random bits to such simple messages. 
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2.2 The RSA Algorithm 
The pioneering paper by Diffie and Hellman introduced a new approach to 

cryptography and, in effect, challenged cryptologists to come up with a cryptographic 

algorithm that met the requirements for public-key systems. One of the first of the responses 

to the challenge was developed in 1977 by Ron Rivest, Adi Shamir, and Len Adleman at MIT 

and first published in 1978. 

The Rivest-Shamir-Adleman (RSA) scheme has since that time reigned supreme as the 

most widely accepted and implemented general-purpose approach to public-key encryption. 

The RSA scheme is a block cipher in which the plaintext and ciphertext are integers between 

0 and n-1 for some n. A typical size for n is 1024 bits, or 309 decimal digits. That is, n is less 

than 21024. We examine RSA in this section in some detail, beginning with an explanation of 

the algorithm. Then we examine some of the computational and cryptanalytical implications 

of RSA. 

 

2.2.1 Description of the Algorithm 

The scheme developed by Rivest, Shamir, and Adleman makes use of an expression 

with exponentials. Plaintext is encrypted in blocks, with each block having a binary value less 

than some number n. That is, the block size must be less than or equal to log2(n); in practice, 

the block size is i bits, where 2^i < n<=2^i+1. Encryption and decryption are of the following 

form, for some plaintext block M and ciphertext block C: 

C = M^e mod n 

M = C^d mod n = (M^e)^d mod n = M^(ed) mod n 

Both sender and receiver must know the value of n. The sender knows the value of e, and only 

the receiver knows the value of d. Thus, this is a public-key encryption algorithm with a public 

key of PU = {e, n} and a private key of PU = {d, n}. For this algorithm to be satisfactory for 

public-key encryption, the following requirements must be met: 

1. It is possible to find values of e, d, n such that M^(ed) mod n = M for all M < n. 

2. It is relatively easy to calculate mod M^e mod n and Cd for all values of M < n. 

3. It is infeasible to determine d given e and n. 

For now, we focus on the first requirement and consider the other questions later. We 

need to find a relationship of the form M^(ed) mod n = M 

The preceding relationship holds if e and d are multiplicative inverses modulo f(n), 

where f(n) is the Euler totient function. It is shown that for p, q prime, f(pq) = (p 1)(q 1) The 

relationship between e and d can be expressed as 

 

This is equivalent to saying 

ed =1 mod f(n) 

d =e^-1 mod f(n) 

That is, e and d are multiplicative inverses mod f(n). Note that, according to the rules of 

modular arithmetic, this is true only if d (and therefore e) is relatively prime to f(n). 

Equivalently, gcd(f(n),d) = 1. 

We are now ready to state the RSA scheme. The ingredients are the following: 

p,q, two prime numbers (private, chosen) 
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n = pq (public, calculated) 

e, with gcd(f(n),e) = 1;1 < e < f(n) (public, chosen) 

d= e^-1(mod f(n)) (private, calculated) 

The private key consists of {d, n} and the public key consists of {e, n}. Suppose that user A 

has published its public key and that user B wishes to send the message M to A. Then B 

calculates C = M^e mod n and transmits C. On receipt of this ciphertext, user A decrypts by 

calculating M = C^d mod n. 

 

Figure 2.5: The RSA Algorithm 

Figure 2.5 summarizes the RSA algorithm. An example is shown in Figure 2.6. For this 

example, the keys were generated as follows: 

1. Select two prime numbers, p = 17 and q = 11. 

2. Calculate n = pq = 17 x 11 = 187. 

3. Calculate f(n) = (p 1)(q 1) = 16 x 10 = 160. 

4. Select e such that e is relatively prime to f(n) = 160 and less than f(n) we choose e = 

7. 

5. Determine d such that de= 1 (mod 160) and d < 160. The correct value is d = 23, because 

23 x 7 = 161 = 10 x 160 + 1; d can be calculated using the extended Euclid's algorithm. 
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Figure 2.6: Example of RSA Algorithm 

The resulting keys are public key PU = {7,187} and private key PR = {23,187}. The example 

shows the use of these keys for a plaintext input of M = 88. For encryption, we need to calculate 

C = 88^7 mod 187. Exploiting the properties of modular arithmetic, we can do this as follows: 
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Figure 2.7: RSA Processing of Multiple Blocks 

 
2.2.2 Computational Aspects 

We now turn to the issue of the complexity of the computation required to use RSA. 

There are actually two issues to consider: encryption/decryption and key generation. Let us 

look first at the process of encryption and decryption and then consider key generation. 

 

2.2.3 Exponentiation in Modular Arithmetic 

Both encryption and decryption in RSA involve raising an integer to an integer power, 

mod n. If the exponentiation is done over the integers and then reduced modulo n, the 

intermediate values would be gargantuan. Fortunately, as the preceding example shows, we 

can make use of a property of modular arithmetic: 

[(a mod n) x (b mod n)] mod n = (a x b) mod n 

Thus, we can reduce intermediate results modulo n. This makes the calculation practical. 

Another consideration is the efficiency of exponentiation, because with RSA we are dealing 

with 
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More generally, suppose we wish to find the value ab with a and b positive integers. If we 

express b as a binary number bk bk1 ... b0 then we have 

 

Therefore, 

We can therefore develop the algorithm for computing ab mod n, shown in Figure 2.8. Table 

2.3 shows an example of the execution of this algorithm. Note that the variable c is not needed; 

it is included for explanatory purposes. The final value of c is the value of the exponent. 

 

Note: The integer b is expressed as a binary number bkbk1 ... b0 

Figure 2.8: Algorithm for Computing a^b mod n 
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Table 2.3: Result of the Fast Modular Exponentiation Algorithm for ab mod n, where 

a = 7, b = 560 = 1000110000, n = 561 

 
2.2.4 Efficient Operation Using the Public Key 

To speed up the operation of the RSA algorithm using the public key, a specific 

choice of e is usually made. The most common choice is 65537 (216 1); two other popular 

choices are 3 and 17. Each of these choices has only two 1 bits and so the number of 

multiplications required to perform exponentiation is minimized. 

However, with a very small public key, such as e = 3, RSA becomes vulnerable to a 

simple attack. Suppose we have three different RSA users who all use the value e = 3 but have 

unique values of n, namely n1, n2, n3. If user A sends the same encrypted message M to all 

three users, then the three ciphertexts are C1 = M3 mod n1; C2 = M3 mod n2; C3 = M3 mod 

n3. It is likely that n1, n2, and n3 are pairwise relatively prime. Therefore, one can use the 

Chinese remainder theorem (CRT) to compute M3 mod (n1n2n3). By the rules of the RSA 

algorithm, M is less than each of the ni therefore M3 < n1n2n3. 

Accordingly, the attacker need only compute the cube root of M3. This attack can be 

countered by adding a unique pseudorandom bit string as padding to each instance of M to be 

encrypted. 

The reader may have noted that the definition of the RSA algorithm requires that during 

key generation the user selects a value of e that is relatively prime to f(n). Thus, for example, 

if a user has preselected e = 65537 and then generated primes p and q, it may turn out that 

gcd(f(n),e) is not equal to 1, Thus, the user must reject any value of p or q that is not congruent 

to 1 (mod 65537). 

 

2.2.5 Efficient Operation Using the Private Key 

We cannot similarly choose a small constant value of d for efficient operation. A small 

value of d is vulnerable to a brute-force attack and to other forms of cryptanalysis. However, 

there is a way to speed up computation using the CRT. We wish to compute the value M = C^d 

mod n. Let us define the following intermediate results: 

Vp = C^d mod p Vq = C^d mod q 

Following the CRT, define the quantities: 

Xp = q x (q1 mod p) Xq = p x (p1 mod q) 

The CRT then shows, that 

M = (VpXp + VqXq) mod n 
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Further, we can simplify the calculation of Vp and Vq using Fermat's theorem, which states that 

a^p1=1(mod p) if p and a are relatively prime. Some thought should convince you that the 

following are valid: 

The quantities d mod (P1) and d mod (q1) can be precalculated. The end result is that the 

calculation is approximately four times as fast as evaluating M = Cd mod n directly. 

 

2.2.6 Key Generation 

Before the application of the public-key cryptosystem, each participant must generate a pair 

of keys. 

This involves the following tasks: 

● Determining two prime numbers, p and q 

● Selecting either e or d and calculating the other 

 
First, consider the selection of p and q. Because the value of n = pq will be known to 

any potential adversary, to prevent the discovery of p and q by exhaustive methods, these 

primes must be chosen from a sufficiently large set (i.e., p and q must be large numbers). On 

the other hand, the method used for finding large primes must be reasonably efficient. 

At present, there are no useful techniques that yield arbitrarily large primes, so some 

other means of tackling the problem is needed. The procedure that is generally used is to pick 

at random an odd number of the desired order of magnitude and test whether that number is 

prime. If not, pick successive random numbers until one is found that tests prime. 

A variety of tests for primality have been developed for a description of a number of 

such tests). Almost invariably, the tests are probabilistic. That is, the test will merely determine 

that a given integer is probably prime. Despite this lack of certainty, these tests can be run in 

such a way as to make the probability as close to 1.0 as desired. As an example, one of the more 

efficient and popular algorithms, the Miller-Rabin algorithm. With this algorithm and most 

such algorithms, the procedure for testing whether a given integer n is prime is to perform some 

calculation that involves n and a randomly chosen integer a. If n "fails" the test, then n is not 

prime. If n "passes" the test, then n may be prime or nonprime. If n passes many such tests with 

many different randomly chosen values for a, then we can have high confidence that n is, in 

fact, prime. 

In summary, the procedure for picking a prime number is as follows. 

1. Pick an odd integer n at random (e.g., using a pseudorandom number generator). 

2. Pick an integer a < n at random. 

3. Perform the probabilistic primality test, such as Miller-Rabin, with a as a parameter. If n 

fails the test, reject the value n and go to step 1. 

4. If n has passed a sufficient number of tests, accept n; otherwise, go to step 2. 

This is a somewhat tedious procedure. However, remember that this process is 

performed relatively infrequently: only when a new pair (PU, PR) is needed. 
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2.2.7 The Security of RSA 

Four possible approaches to attacking the RSA algorithm are as follows: 

● Brute force: This involves trying all possible private keys. 

● Mathematical attacks: There are several approaches, all equivalent in effort to factoring 

the product of two primes. 

● Timing attacks: These depend on the running time of the decryption algorithm. 

● Chosen ciphertext attacks: This type of attack exploits properties of the RSA algorithm. 

The defense against the brute-force approach is the same for RSA as for other 

cryptosystems, namely, use a large key space. Thus, the larger the number of bits in d, the 

better. However, because the calculations involved, both in key generation and in 

encryption/decryption, are complex, the larger the size of the key, the slower the system will 

run. 

 
2.2.7.1 The Factoring Problem 

Table 2.4: Progress in Factorization 
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Figure 2.9: MIPS-years Needed to Factor 

 
In addition to specifying the size of n, a number of other constraints have been suggested by 

researchers. To avoid values of n that may be factored more easily, the algorithm's inventors 

suggest the following constraints on p and q: 

1. p and q should differ in length by only a few digits. Thus, for a 1024-bit key (309 decimal 

digits), both p and q should be on the order of magnitude of 1075 to 10100. 

2. Both (p 1) and (q 1) should contain a large prime factor. 

3. gcd(p 1, q 1) should be small. 

In addition, it  has been demonstrated that if e < n and d < n¼, then d  can be  easily 

determined. 

 
2.2.7.2 Timing Attacks 

A timing attack is somewhat analogous to a burglar guessing the combination of a safe 

by observing how long it takes for someone to turn the dial from number to number. We can 

explain the attack using the modular exponentiation algorithm of Figure 2.8, but the attack can 

be adapted to work with any implementation that does not run in fixed time. In this algorithm, 

modular exponentiation is accomplished bit by bit, with one modular 
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multiplication performed at each iteration and an additional modular multiplication performed 

for each 1 bit. 

As Kocher points out in his paper, the attack is simplest to understand in an extreme 

case. Suppose the target system uses a modular multiplication function that is very fast in 

almost all cases but in a few cases takes much more time than an entire average modular 

exponentiation. The attack proceeds bit-by bit starting with the leftmost bit, bk. Suppose that 

the first j bits are known (to obtain the entire exponent, start with j = 0 and repeat the attack 

until the entire exponent is known). For a given ciphertext, the attacker can complete the first 

j iterations of the for loop. The operation of the subsequent step depends on the unknown 

exponent bit. If the bit is set, d<- (d x a) mod n will be executed. For a few values of a and d, 

the modular multiplication will be extremely slow, and the attacker knows which these are. 

Therefore, if the observed time to execute the decryption algorithm is always slow when this 

particular iteration is slow with a 1 bit, then this bit is assumed to be 1. If a number of observed 

execution times for the entire algorithm are fast, then this bit is assumed to be 0. 

In practice, modular exponentiation implementations do not have such extreme timing 

variations, in which the execution time of a single iteration can exceed the mean execution time 

of the entire algorithm. Nevertheless, there is enough variation to make this attack practical. 

Although the timing attack is a serious threat, there are simple countermeasures that 

can be used, including the following: 

● Constant exponentiation time: Ensure that all exponentiations take the same amount of 

time before returning a result. This is a simple fix but does degrade performance. 

● Random delay: Better performance could be achieved by adding a random delay to the 

exponentiation algorithm to confuse the timing attack. Kocher points out that if defenders don't 

add enough noise, attackers could still succeed by collecting additional measurements to 

compensate for the random delays. 

● Blinding: Multiply the ciphertext by a random number before performing exponentiation. 

This process prevents the attacker from knowing what ciphertext bits are being processed inside 

the computer and therefore prevents the bit-by-bit analysis essential to the timing attack. 

RSA Data Security incorporates a blinding feature into some of its products. The private-key 

operation M = Cd mod n is implemented as follows: 

1. Generate a secret random number r between 0 and n-1. 

2. Compute C' = C(re) mod n, where e is the public exponent. 

3. Compute M' = (C')d mod n with the ordinary RSA implementation. 

4. Compute M = M'r^-1 mod n. In this equation, r1 is the multiplicative inverse of r mod n; 

It can be demonstrated that this is the correct result by observing that red mod n =r mod n. 

 
RSA Data Security reports a 2 to 10% performance penalty for blinding. 

 
2.2.7.3 Chosen Ciphertext Attack and Optimal Asymmetric Encryption Padding 

The basic RSA algorithm is vulnerable to a chosen ciphertext attack (CCA). CCA is 

defined as an attack in which adversary chooses a number of ciphertexts and is then given the 

corresponding plaintexts, decrypted with the target's private key. Thus, the adversary could 
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select a plaintext, encrypt it with the target's public key and then be able to get the plaintext 

back by having it decrypted with the private key. Clearly, this provides the adversary with no 

new information. Instead, the adversary exploits properties of RSA and selects blocks of data 

that, when processed using the target's private key, yield information needed for cryptanalysis. 

A simple example of a CCA against RSA takes advantage of the following property of RSA: 

We can decrypt C = Me using a CCA as follows. 
 

Therefore, Y = (2M) mod n From this, we can deduce M. To overcome this simple attack, 

practical RSA based cryptosystems randomly pad the plaintext prior to encryption. This 

randomizes the ciphertext so that Equation no longer holds. However, more sophisticated 

CCAs are possible and a simple padding with a random value has been shown to be insufficient 

to provide the desired security. To counter such attacks RSA Security Inc., a leading RSA 

vendor and former holder of the RSA patent, recommends modifying the plaintext using a 

procedure known as optimal asymmetric encryption padding (OAEP). A full discussion of the 

threats and OAEP are beyond our scope; 

Here, we simply summarize the OAEP procedure. Figure 2.10 depicts OAEP encryption. As 

a first step the message M to be encrypted is padded. A set of optional parameters P is passed 

through a hash function H. The output is then padded with zeros to get the desired length in the 

overall data block (DB). Next, a random seed is generated and passed through another hash 

function, called the mask generating function (MGF). The resulting hash value is bit-by- bit 

XORed with DB to produce a maskedDB. The maskedDB is in turn passed through the MGF 

to form a hash that is XORed with the seed to produce the masked seed. The concatenation of 

the maskedseed and the maskedDB forms the encoded message EM. Note that the EM includes 

the padded message, masked by the seed, and the seed, masked by the maskedDB. The EM is 

then encrypted using RSA. 
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Figure 2.10: Encryption Using Optimal Assymetric Encryption Padding (OAEP) 

 
2.3 Diffie-Hellman Key Exchange 

The first published public-key algorithm appeared in the seminal paper by Diffie and 

Hellman that defined public-key cryptography and is generally referred to as Diffie-Hellman 

key exchange. A number of commercial products employ this key exchange technique. 

The purpose of the algorithm is to enable two users to securely exchange a key that can then 

be used for subsequent encryption of messages. The algorithm itself is limited to the exchange 

of secret values. 

The Diffie-Hellman algorithm depends for its effectiveness on the difficulty of computing 

discrete logarithms. Briefly, we can define the discrete logarithm in the following way. First, 

we define a primitive root of a prime number p as one whose powers modulo p generate all 
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the integers from 1 to p-1. That is, if a is a primitive root of the prime number p, then the 

numbers 

The exponent i is referred to as the discrete logarithm of b for the base a, mod p. We express 

this value as dloga,p (b). 

 

2.3.1 The Algorithm 

Figure 2.11: The Diffie-Hellman Key Exchange 

Figure 2.11 summarizes the Diffie-Hellman key exchange algorithm. For this scheme, there 

are two publicly known numbers: a prime number q and an integer that is a primitive root of 

q. Suppose the 
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Figure 2.12: The Diffie-Hellman Key Exchange Algorithm 
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2.3.2 Key Exchange Protocols 

Figure 2.13 shows a simple protocol that makes use of the Diffie-Hellman calculation. Suppose 

that user A wishes to set up a connection with user B and use a secret key to encrypt messages 

on that connection. User A can generate a one-time private key XA, calculate YA, and send that 

to user B. User B responds by generating a private value XB calculating YB, and sending YB to 

user A. Both users can now calculate the key. The necessary public values q and  would need 

to be known ahead of time. Alternatively, user A could pick values for q and  and include 

those in the first message. 
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Figure 2.13: Diffie-Hellman Key Exchange 

 
As an example of another use of the Diffie-Hellman algorithm, suppose that a group of users 

(e.g., all users on a LAN) each generate a long-lasting private value Xi (for user i) and calculate 

a public value Yi. These public values, together with global public values for q and a, are 

stored in some central directory. At any time, user j can access user i's public value, calculate 

a secret key, and use that to send an encrypted message to user A. If the central directory is 

trusted, then this form of communication provides both confidentiality and a degree of 

authentication. Because only i and j can determine the key, no other user can read the message 

(confidentiality). Recipient i knows that only user j could have created a message using this 

key (authentication). However, the technique does not protect against replay attacks. 

 
2.3.3 Man-in-the-Middle Attack 

The protocol depicted in Figure 2.11 is insecure against a man-in-the-middle attack. 

Suppose Alice and Bob wish to exchange keys, and Darth is the adversary. The attack proceeds 

as follows: 
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At this point, Bob and Alice think that they share a secret key, but instead Bob and Darth 

share secret 

key K1 and Alice and Darth share secret key K2. All future communication between Bob and 

Alice is 

compromised in the following way: 

1. Alice sends an encrypted message M: E(K2, M). 

2. Darth intercepts the encrypted message and decrypts it, to recover M. 

3. Darth sends Bob E(K1, M) or E(K1, M'), where M' is any message. In the first case, 

Darth simply wants to eavesdrop on the communication without altering it. In the 

second case, Darth wants to modify the message going to Bob. 

The key exchange protocol is vulnerable to such an attack because it does not authenticate the 

participants. This vulnerability can be overcome with the use of digital signatures and public- 

key certificates. 
 

Figure 2.14: Man-in-the-Middle Attack 
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2.4 ElGamal Cryptographic System 

In 1984, T Elgamal announced a public-key scheme based on discrete logarithms, 

closely related to the Diffie-Hellman technique. The Elgamal cryptosystem is used in some 

form in a number of standards including the digital signature standard(DSS) and the S/MIME 

email standard. 

 

This steps are summarized in figure 2.15. It corresponds to figure 2.1a. Alice generates a 

public/private keys pair; Bob encrypts using Alice’s public key; and Alice decrypts using her 

private key. 
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Figure 2.15: The Elgamal Cryptosystem 
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Module-3: 

Elliptic Curve Cryptography, Key 

Management and Distribution 
 

 

3.1 Elliptic Curve Arithmetic 
Most of the products and standards that use public-key cryptography for encryption and digital 

signatures use RSA. As we have seen, the key length for secure RSA use has increased over 

recent years, and this has put a heavier processing load on applications using RSA. This burden 

has ramifications, especially for electronic commerce sites that conduct large numbers of secure 

transactions. Recently, a competing system has begun to challenge RSA: elliptic curve 

cryptography (ECC). Already, ECC is showing up in standardization efforts, including the 

IEEE P1363 Standard for Public-Key Cryptography. 

The principal attraction of ECC, compared to RSA, is that it appears to offer equal 

security for a far smaller key size, thereby reducing processing overhead. On the other hand, 

although the theory of ECC has been around for some time, it is only recently that products 

have begun to appear and that there has been sustained cryptanalytic interest in probing for 

weaknesses. Accordingly, the confidence level in ECC is not yet as high as that in RSA. ECC 

is fundamentally more difficult to explain than either RSA or Diffie-Hellman, and a full 

mathematical description. 

 

3.1.1 Abelian Groups 
An abelian group G, sometimes denoted by {G, • }, is a set of elements with a binary operation, 

denoted by •, that associates to each ordered pair (a, b) of elements in G an element (a 

• b) in G, such that the following axioms are obeyed. 
 

A number of public-key ciphers are based on the use of an abelian group. For example, 

Diffie-Hellman key exchange involves multiplying pairs of nonzero integers modulo a prime 

number q. Keys are generated by exponentiation over the group, with exponentiation defined 

as repeated multiplication: 

 
For example, ak mod q = mod q. To attack Diffie-Hellman, the attacker must determine k 

given a and ak; this is the discrete log problem. 

For elliptic curve cryptography, an operation over elliptic curves, called addition, is used 

Multiplication is defined by repeated addition. For example, 

 
where the addition is performed over an elliptic curve. Cryptanalysis involves determining k 

given a and (a x k). 
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An elliptic curve is defined by an equation in two variables, with coefficients. For 

cryptography, the variables and coefficients are restricted to elements in a finite field, which 

results in the definition of a finite abelian group. Before looking at this, we first look at elliptic 

curves in which the variables and coefficients are real numbers. 

 

3.1.2 Elliptic Curves over Real Numbers 
Elliptic curves are not ellipses. They are so named because they are described by cubic 

equations, similar to those used for calculating the circumference of an ellipse. In general, cubic 

equations for elliptic curves take the form 

y2 + axy + by = x3 + cx2 + dx + e 

where a, b, c, d, and e are real numbers and x and y take on values in the real numbers. For 

our purpose, it is sufficient to limit ourselves to equations of the form. 

 
Such equations are said to be cubic, or of degree 3, because the highest exponent they contain 

is a 3. Also included in the definition of an elliptic curve is a single element denoted O and 

called the point at infinity or the zero point. To plot such a curve, we need to compute 

 
For given values of a and b, the plot consists of positive and negative values of y for each value 

of x. Thus each curve is symmetric about y = 0. 

Figure 3.1 shows two examples of elliptic curves. As you can see, the formula 

sometimes produces weird-looking curves. 

 

Figure 3.1: Example of Elliptic Curve 
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Now, consider the set of points E(a, b) consisting of all of the points (x, y) that satisfy 

together with the element O. Using a different value of the pair (a, b) results in a different set 

E(a, b). Using this terminology, the two curves in Figure 3.1 depict the sets E(1,0) and E(1, 

1), respectively. 

 

3.1.3 Geometric Description of Addition 

It can be shown that a group can be defined based on the set E(a, b) for specific values of a 

and b in , provided the following condition is met: 

To define the group, we must define an operation, called addition and denoted by +, for 

the set E(a, b), where a and b satisfy above equation. In geometric terms, the rules for addition 

can be stated as follows: If three points on an elliptic curve lie on a straight line, their sum 

is O. From this definition, we can define the rules of addition over an elliptic curve: 

1. O serves as the additive identity. Thus O = O; for any point P on the elliptic curve, P 

+ O = P. In what follows, we assume P O and Q  O. 

2. The negative of a point P is the point with the same x coordinate but the negative of the 

y coordinate; that is, if P = (x, y), then P = (x, y). Note that these two points can be 

joined by a vertical line. Note that P + (P) = P P = O. 

3. To add two points P and Q with different x coordinates, draw a straight line between 

them and find the third point of intersection R. It is easily seen that there is a unique 

point R that is the point of intersection (unless the line is tangent to the curve at either 

P or Q, in which case we take R = P or R = Q, respectively). To form a group structure, 

we need to define addition on these three points as follows: P + Q = R. That is, we 

define P + Q to be the mirror image (with respect to the x axis) of the third point of 

intersection. Figure 3.1 illustrates this construction. 

4. The geometric interpretation of the preceding item also applies to two points, P and P, 

with the same x coordinate. The points are joined by a vertical line, which can be viewed 

as also intersecting the curve at the infinity point. We therefore have P + ( P) 

= O, consistent with item (2). 

5. To double a point Q, draw the tangent line and find the other point of intersection S. 

Then Q + Q = 2Q = S. 

With the preceding list of rules, it can be shown that the set E(a, b) is an abelian group. 

 

Algebraic Description of Addition 
We present some results that enable calculation of additions over elliptic curves. For two 

distinct points P = (xP, yP) and Q = (xQ, yQ) that are not negatives of each other, the slope of 

the line l that joins them is D = (yQ yP). There is exactly one other point where l intersects the 

elliptic curve, and that is the negative of the sum of P and Q. After some algebraic 

manipulation, we can express the sum R = P + Q as follows: 

 

We also need to be able to add a point to itself: P + P = 2P = R. When yP 0, the expressions 

are 
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3.1.4 Elliptic Curves over Zp 

Elliptic curve cryptography makes use of elliptic curves in which the variables and coefficients 

are all restricted to elements of a finite field. Two families of elliptic curves are used in 

cryptographic applications: prime curves over Zp and binary curves over GF(2m). For a prime 

curve over Zp, 

we use a cubic equation in which the variables and coefficients all take on values in the 

set of integers from 0 through p 1 and in which calculations are performed modulo p. For a 

binary curve defined over GF (2m), the variables and coefficients all take on values in GF(2n) 

and in calculations are performed over GF(2n) points out that prime curves are best for software 

applications, because the extended bit-fiddling operations needed by binary curves are not 

required; and that binary curves are best for hardware applications, where it takes remarkably 

few logic gates to create a powerful, fast cryptosystem. 

There is no obvious geometric interpretation of elliptic curve arithmetic over finite 

fields. The algebraic interpretation used for elliptic curve arithmetic over real numbers does 

readily carry over, and this is the approach we take. 

For elliptic curves over Zp, as with real numbers 

 
The above equation is satisfied for a = 1, b = 1, x = 9, y = 9, y = 7, p = 23: 

72 mod 23 = (93 + 9 + 1) mod 23 

49 mod 23 = 739 mod 23 

3 = 3 

Now consider the set Ep (a, b) consisting of all pairs of integers (x, y) that satisfy above 

equation, together with a point at infinity O. The coefficients a and b and the variables x and 

y are all elements of Zp. 

Table 3.1: Points on the Elliptic Curve E23 (1,1) 
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Figure 3.2: The Elliptic Curve E23(1,1) 
It can be shown that a finite abelian group can be defined based on the set Ep(a, b) provided 

that (x3 +ax + b) mod p has no repeated factors. This is equivalent to the condition 

 
The rules for addition over Ep(a, b) correspond to the algebraic technique described for 

elliptic curves 

defined over real number. For all points P, Q belongs Ep(a, b); 

1. P + O = P. 

2. If P = (xP, yP) then P + (xP, yP) = O. The point (xP, yP) is the negative of P, denoted 

as P. For example, in E23(1,1), for P = (13,7), we have P = (13, 7). But 7 mod 23 = 

16. Therefore, P = (13, 16), which is also in E23(1,1). 

3. If P = (xP, yQ) and Q = (xQ, yQ) with P   Q, then R = P + Q = (xR, yR) is 

determined by the following rules: 

xR = (l2 xP xQ) mod p 

yR = (l(xP xR) yP) mod p 

where 

 
4. Multiplication is defined as repeated addition; for example, 4P = P + P + P + P. 

For example, let P = (3,10) and Q = (9,7) in E23(1,1). Then 
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xR = (112 3 9) mod 23 = 17 

yR = (11(3 17) 10) mod 23 = 164 mod 23 = 20 

So P + Q = (17, 20). To find 2P, 

 
The last step in the preceding equation involves taking the multiplicative inverse of 4 in Z23. 

This can be done using the extended Euclidean algorithm. 

For determining the security of various elliptic curve ciphers, it is of some interest to know 

the number the number of points in a finite abelian group defined over an elliptic curve. In 

the case of the finite group Ep(a,b), the number of points N is bounded by 

 
Note that the number of points in Ep(a, b) is approximately equal to the number of elements in 

Zp, namely p elements. 
 

3.1.5 Elliptic Curves over GF(2m) 

A finite field GF(2m) consists of 2m elements, together with addition and multiplication 

operations that can be defined over polynomials. For elliptic curves over GF(2m), we use a 

cubic equation in which the variables and coefficients all take on values in GF(2m), for some 

number m, and in which calculations are performed using the rules of arithmetic in GF(2m). 

It turns out that the form of cubic equation appropriate for cryptographic applications for 

elliptic curves is somewhat different for GF(2m) than for Zp. The form is 

 
where it is understood that the variables x and y and the coefficients a and b are elements of 

GF(2m) of and that calculations are performed in GF(2m). 

Now consider the set E2 m(a, b) consisting of all pairs of integers (x, y) that satisfy the above 

equation together with a point at infinity O. 
For example, let us use the finite field GF(24) with the irreducible polynomial f(x) = x4 + x + 

1. This yields a generator that satisfies f(g) = 0, with a value of g4 = g + 1, or in binary 0010. 

We can develop the powers of g as follows: 

For example, g5 = (g4)(g) = g2 + g = 0110. 
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Table 3.2 lists the points (other than O) that are part of E24(g4, 1). Figure 3.3 plots the points 

of E24(g4, 1). 

Table 3.2: Points (other than O) on the Elliptic curve 

 

 

Figure 3.3: the Elliptic curve 
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3.2 Elliptic Curve Cryptography 
The addition operation in ECC is the counterpart of modular multiplication in RSA, and 

multiple addition is the counterpart of modular exponentiation. To form a cryptographic system 

using elliptic curves, we need to find a "hard problem" corresponding to factoring the product 

of two primes or taking the discrete logarithm. 
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Consider the equation Q = kP where Q, P is belongs to   Ep(a, b) and k < p. It is relatively easy 

to calculate Q given k and P, but it is relatively hard to determine k given Q and P. This is 

called the discrete logarithm problem for elliptic curves. 

Consider the group E23 (9, 17). This is the group defined by the equation y2 mod 23 = (x3 + 

9x + 17) mod 23. What is the discrete logarithm k of Q = (4, 5) to the base P = (16.5)? The 

brute-force method is to compute multiples of P until Q is found. 

Thus P = (16, 5); 2P = (20, 20); 3P = (14, 14); 4P = (19, 20); 5P = (13, 10); 6P = (7, 3); 7P = 

(8, 7); 8P = (12, 17); 9P = (4, 5). 

Because 9P = (4, 5) = Q, the discrete logarithm Q = (4, 5) to the base P = (16, 5) is k = 9. In a 

real application, k would be so large as to make the brute-force approach infeasible. 

 
3.2.1 Analog of Diffie-Hellman Key Exchange 

Key exchange using elliptic curves can be done in the following manner. First pick a large 

integer q, which is either a prime number p or an integer of the form 2m and elliptic curve 

parameters a and b for 

 or  

This defines the elliptic group of points Eq(a, b). Next, pick a base point G = (x1, y1) in 

Ep(a, b) whose order is a very large value n. The order n of a point G on an elliptic curve is 

the smallest positive integer n such that nG = O. Eq(a, b) and G are parameters of the 

cryptosystem known to all participants. 

A key exchange between users A and B can be accomplished as follows 

1. A selects an integer nA less than n. This is A's private key. A then generates a public key 

PA = nA x G; the public key is a point in Eq(a, b). 

2. B similarly selects a private key nB and computes a public key PB. 

3. A generates the secret key K = nA x PB. B generates the secret key K = nB x PA. 

 
Figure 3.4. ECC Diffie-Hellman Key Exchange 

The two calculations in step 3 produce the same result because nA x PB = nA x (nB x G) = nB 

x (nA x G) = nB x PA 
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To break this scheme, an attacker would need to be able to compute k given G and kG, which 

is assumed hard. 

As an example, 
[5] 

take p = 211; Ep(0, 4), which is equivalent to the curve y2 = x3 4; and G = (2, 
2). 

One can calculate that 240G = O. A's private key is nA = 121, so A's public key is PA = 121(2, 

2) = (115, 48). B's private key is nB = 203, so B's public key is 203(2, 2) = (130, 203). 

The shared secret key is 121(130, 203) = 203(115, 48) = (161, 69). 

Note that the secret key is a pair of numbers. If this key is to be used as a session key for 

conventional encryption, then a single number must be generated. We could simply use the x 

coordinates or some simple function of the x coordinate. 

 

3.2.2 Elliptic Curve Encryption/Decryption 

Several approaches to encryption/decryption using elliptic curves have been analyzed in the 

literature. The first task in this system is to encode the plaintext message m to be sent as an x- 

y point Pm. It is the point Pm that will be encrypted as a ciphertext and subsequently decrypted. 

Note that we cannot simply encode the message as the x or y coordinate of a point, because not 

all such coordinates are in Eq(a, b); 

Again, there are several approaches to this encoding, which we will not address here, 

but suffice it to say that there are relatively straightforward techniques that can be used. 

As with the key exchange system, an encryption/decryption system requires a point G and an 

elliptic group Eq(a, b) as parameters. Each user A selects a private key nA and generates a 

public key PA = nA x G. 

To encrypt and send a message Pm to B, A chooses a random positive integer k and 

produces the ciphertext Cm consisting of the pair of points: 

Cm = {kG, Pm + kPB} 

Note that A has used B's public key PB. To decrypt the ciphertext, B multiplies the first point 

in the pair by B's secret key and subtracts the result from the second point: 

Pm + kPB nB(kG) = Pm + k(nBG) nB(kG) = Pm 

A has masked the message Pm by adding kPB to it. Nobody but A knows the value of 

k, so even though PB is a public key, nobody can remove the mask kPB. However, A also 

includes a "clue," which is enough to remove the mask if one knows the private key nB. For an 

attacker to recover the message, the attacker would have to compute k given G and kG, which 

is assumed hard. 

As an example of the encryption process (taken from [KOBL94]), take p = 751; Ep(1, 

188), which is equivalent to the curve y2 = x3 x + 188; and G = (0, 376). Suppose that A wishes 

to send a message to B that is encoded in the elliptic point Pm = (562, 201) and that A selects 

the random number k = 386. B's public key is PB = (201, 5). We have 386(0, 376) = (676, 558), 

and (562, 201) + 386(201, 5) = (385, 328). Thus A sends the cipher text 

{(676, 558), (385, 328)}. 

 

3.2.3 Security of Elliptic Curve Cryptography 

The security of ECC depends on how difficult it is to determine k given kP and P. This is 

referred to as the elliptic curve logarithm problem. The fastest known technique for taking the 

elliptic curve logarithm is known as the Pollard rho method. Table 3.3 compares various 

algorithms by showing comparable key sizes in terms of computational effort for cryptanalysis. 

As can be seen, a considerably smaller key size can be used for ECC compared to RSA. 
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Furthermore, for equal key lengths, the computational effort required for ECC and RSA 

is comparable. Thus, there is a computational advantage to using ECC with a shorter key length 

than a comparably secure RSA. 

Table 3.3. Comparable Key Sizes in Terms of Computational Effort for Cryptanalysis 

 
 

3.3 Pseudorandom Number Generation (PRNG) based on Asymmetric 

Ciphers 
➢ asymmetric encryption algorithm produce apparently random output 

➢ hence can be used to build a pseudorandom number generator (PRNG) 

➢ much slower than symmetric algorithms 

➢ hence only use to generate a short pseudorandom bit sequence (eg. key) 

3.3.1 PRNG based on RSA 

 

 
Figure 3.5: Micali-Schnorr Pseudorandom Bit Generator 
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3.3.2 PRNG based on ECC 

• dual elliptic curve PRNG 

– NIST SP 800-9, ANSI X9.82 and ISO 18031 

• some controversy on security /inefficiency 

• algorithm 

for i = 1 to k do 

set si = x(si-1 P ) 
set ri = lsb240 (x(si Q)) 

end for 
return r1 , . . . , rk 

• only use if just have ECC 
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3.4 Symmetric key distribution using symmetric encryption 

➢ symmetric schemes require both parties to share a common secret key 
 

➢ issue is how to securely distribute this key 
 

➢ whilst protecting it from others 
 

➢ frequent key changes can be desirable 
 

➢ often secure system failure due to a break in the key distribution scheme 

Given parties A and B have various key distribution alternatives: 

1. A can select key and physically deliver to B 
 

2. third party can select & deliver key to A & B 
 

3. if A & B have communicated previously can use previous key to encrypt a new key 
 

4. if A & B have secure communications with a third party C, C can relay key between 

A & B 

 

 

Figure 3.6: Number of keys required to support arbitrary connections between 

endpoints 

 

 
Key Hierarchy 

➢ typically have a hierarchy of keys 

➢ session key 
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⚫ temporary key 

⚫ used for encryption of data between users 

⚫ for one logical session then discarded 

➢ master key 

⚫ used to encrypt session keys 

⚫ shared by user & key distribution center 
 

 

 

 

Figure 3.7: The use of a key hierarchy 

 

3.4.1 Key Distribution Scenario 
 

Figure 3.8: Key Distribution Scenario 
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3.4.2 A Transparent Key Control Scheme 

Figure 3.9: Automatic key distribution for connection-oriented protocol 

 

3.4.3 Decentralized Key Control 

 

Figure 3.10: Decentralized key distribution 
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3.4.4 Controlling key usage 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Control Vector Encryption and Decryption 

Key Distribution Issues 

➢ hierarchies of KDC’s required for large networks, but must trust each other 

➢ session key lifetimes should be limited for greater security 

➢ use of automatic key distribution on behalf of users, but must trust system 

➢ use of decentralized key distribution 

➢ controlling key usage 

 

3.5 Symmetric Key Distribution using asymmetric encryption 

➢ public key cryptosystems are inefficient 

⚫ so almost never use for direct data encryption 

⚫ rather use to encrypt secret keys for distribution 

 

3.5.1 Simple Secret Key Distribution 

 

➢ Merkle proposed this very simple scheme 

⚫ allows secure communications 

⚫ no keys before/after exist 
 
 

 

Figure 3.12: Simple use of public key encryption to establish a session key 

 

➢ this very simple scheme is vulnerable to an active man-in-the-middle attack 



Cryptography Module-3 

   Prepared by Divyashree H S Dept. Of CSE, BrCE 17 

 

 

 

 
 

Figure 3.13: Another Man-in-the-Middle Attack 

 

3.5.2 Secret Key Distribution with Confidentiality and Authentication 
 

Figure 3.14: public key distribution of secret keys 

 

3.5.3 Hybrid Key Distribution 

➢ retain use of private-key KDC 

➢ shares secret master key with each user 

➢ distributes session key using master key 

➢ public-key used to distribute master keys 

⚫ especially useful with widely distributed users 

➢ rationale 

⚫ performance 

⚫ backward compatibility 
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3.6 Distribution of Public Keys 
 

➢ can be considered as using one of: 

⚫ public announcement 

⚫ publicly available directory 

⚫ public-key authority 

⚫ public-key certificates 

 
3.6.1 Public Announcement 

➢ users distribute public keys to recipients or broadcast to community at large 

⚫ eg. append PGP keys to email messages or post to news groups or email list 

➢ major weakness is forgery 

⚫ anyone can create a key claiming to be someone else and broadcast it 

⚫ until forgery is discovered can masquerade as claimed user 
 

Figure 3.15: Uncontrolled public key distribution 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16: public-key publication 

 

3.6.2 Publicly Available Directory 

➢ can obtain greater security by registering keys with a public directory 

➢ directory must be trusted with properties: 

⚫ contains {name,public-key} entries 

⚫ participants register securely with directory 
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⚫ participants can replace key at any time 

⚫ directory is periodically published 

⚫ directory can be accessed electronically 

➢ still vulnerable to tampering or forgery 

 

3.6.3 Public-Key Authority 
 

➢ improve security by tightening control over distribution of keys from directory 

➢ has properties of directory 

➢ and requires users to know public key for the directory 

➢ then users interact with directory to obtain any desired public key securely 

⚫ does require real-time access to directory when keys are needed 

⚫ may be vulnerable to tampering 
 
 

 

Figure 3.17: public key distribution scenario 

 

3.6.4 Public-Key Certificates 

➢ certificates allow key exchange without real-time access to public-key authority 

➢ a certificate binds identity to public key 

⚫ usually with other info such as period of validity, rights of use etc 

➢ with all contents signed by a trusted Public-Key or Certificate Authority (CA) 

➢ can be verified by anyone who knows the public-key authorities public-key 

 

Requirements: 

1. Any participant can read a certificate to determine the name and public key of the 

certificate‘s owner. 

2. Any participant can verify that the certificate originated from the certificate authority 

and is not counterfeit. 

3. Only the certificate authority can create and update certificates. 

4. Any participant can verify the time validity of the certificate. 
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Figure 3.18: Exchange of public-key certificates 
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Module-4: 

4.1 X.509 certificates 

ITU-T recommendation X.509 is part of the X.500 series of recommendations that define a 

directory service. The directory is, in effect, a server or distributed set of servers that maintains 

a database of information about users. The information includes a mapping from user name to 

network address, as well as other attributes and information about the users. 

X.509 defines a framework for the provision of authentication services by the X.500 

directory to its users. 

X.509 is an important standard because the certificate structure and authentication 

protocols defined in X.509 are used in a variety of contexts. 

X.509 was initially issued in 1988. The standard was subsequently revised to address 

some of the security concerns documented; a revised recommendation was issued in 1993. A 

third version was issued in 1995 and revised in 2000. 

X.509 is based on the use of public-key cryptography and digital signatures. The 

standard does not dictate the use of a specific algorithm but recommends RSA. The digital 

signature scheme is assumed to require the use of a hash function. Again, the standard does not 

dictate a specific hash algorithm. The 1988 recommendation included the description of a 

recommended hash algorithm; this algorithm has since been shown to be insecure and was 

dropped from the 1993 recommendation. Figure 4.1 illustrates the generation of a public-key 

certificate. 

 
Figure 4.1: X.509 public key certification use 

 

4.1.1 Certificates 

The heart of the X.509 scheme is the public-key certificate associated with each user. These 

user certificates are assumed to be created by some trusted certification authority (CA) and 

placed in the directory by the CA or by the user. The directory server itself is not responsible 

for the creation of public keys or for the certification function; it merely provides an easily 

accessible location for users to obtain certificates. 
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Figure 14.2a shows the general format of a certificate, which includes the following elements: 

● Version: Differentiates among successive versions of the certificate format; the default is 

version 1. If the Issuer Unique Identifier or Subject Unique Identifier are present, the value 

must be version 2. If one or more extensions are present, the version must be version 3. 

● Serial number: An integer value, unique within the issuing CA, that is unambiguously 

associated with this certificate. 

● Signature algorithm identifier: The algorithm used to sign the certificate, together with 

any associated parameters. Because this information is repeated in the Signature field at the 

end of the certificate, this field has little, if any, utility. 

● Issuer name: X.500 name of the CA that created and signed this certificate. 

● Period of validity: Consists of two dates: the first and last on which the certificate is valid. 

● Subject name: The name of the user to whom this certificate refers. That is, this certificate 

certifies the public key of the subject who holds the corresponding private key. 

● Subject's public-key information: The public key of the subject, plus an identifier of the 

algorithm for which this key is to be used, together with any associated parameters. 

● Issuer unique identifier: An optional bit string field used to identify uniquely the issuing 

CA in the event the X.500 name has been reused for different entities. 

● Subject unique identifier: An optional bit string field used to identify uniquely the subject 

in the event the X.500 name has been reused for different entities. 

● Extensions: A set of one or more extension fields. Extensions were added in version 3 

● Signature: Covers all of the other fields of the certificate; it contains the hash code of the 

other fields, encrypted with the CA's private key. This field includes the signature algorithm 

identifier. 

 
Figure 4.2: X.509 Formats 

 

The unique identifier fields were added in version 2 to handle the possible reuse of subject 

and/or issuer names over time. These fields are rarely used. 

The standard uses the following notation to define a certificate: 

CA<<A>> = CA {V, SN, AI, CA, TA, A, Ap} 
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where 

Y <<X>> = the certificate of user X issued by certification authority Y 

Y {I} = the signing of I by Y. It consists of I with an encrypted hash code appended 

The CA signs the certificate with its private key. If the corresponding public key is known to 

a user, then that user can verify that a certificate signed by the CA is valid. 

 

4.1.2 Obtaining a User's Certificate 

User certificates generated by a CA have the following characteristics: 

● Any user with access to the public key of the CA can verify the user public key that was 
certified. 

● No party other than the certification authority can modify the certificate without this being 

detected. 

Because certificates are unforgeable, they can be placed in a directory without the need for the 

directory to make special efforts to protect them. If all users subscribe to the same CA, then 

there is a common trust of that CA. All user certificates can be placed in the directory for 

access by all users. In addition, a user can transmit his or her certificate directly to other users. 

In either case, once B is in possession of A's certificate, B has confidence that messages it 

encrypts with A's public key will be secure from eavesdropping and that messages signed with 

A's private key are unforgeable. 

If there is a large community of users, it may not be practical for all users to subscribe 

to the same CA. Because it is the CA that signs certificates, each participating user must have 

a copy of the CA's own public key to verify signatures. This public key must be provided to 

each user in an absolutely secure (with respect to integrity and authenticity) way so that the 

user has confidence in the associated certificates. Thus, with many users, it may be more 

practical for there to be a number of CAs, each of which securely provides its public key to 

some fraction of the users. 

Now suppose that A has obtained a certificate from certification authority X1 and B has 

obtained a certificate from CA X2. If A does not securely know the public key of X2, then B's 

certificate, issued by X2, is useless to A. A can read B's certificate, but A cannot verify the 

signature. However, if the two CAs have securely exchanged their own public keys, the 

following procedure will enable A to obtain B's public key: 

1. A obtains, from the directory, the certificate of X2 signed by X1. Because A securely 

knows X1's public key, A can obtain X2's public key from its certificate and verify it 

by means of X1's signature on the certificate. 

2. A then goes back to the directory and obtains the certificate of B signed 
by X2 Because A now has a trusted copy of X2's public key, A can verify the 
signature and securely obtain B's public key. 

 

A has used a chain of certificates to obtain B's public key. In the notation of X.509, this chain 

is expressed as 

X1<<X2>> X2 <<B>> 

In the same fashion, B can obtain A's public key with the reverse chain: 

X2<<X1>> X1 <<A>> 

This scheme need not be limited to a chain of two certificates. An arbitrarily long path of 

CAs can be followed to produce a chain. A chain with N elements would be expressed as 

X1<<X2>> X2 <<X3>>... XN<<B>> 

In this case, each pair of CAs in the chain (Xi, Xi+1) must have created certificates for each 

other. All these certificates of CAs by CAs need to appear in the directory, and the user needs 
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to know how they are linked to follow a path to another user's public-key certificate. X.509 

suggests that CAs be arranged in a hierarchy so that navigation is straightforward. 

 

Figure 4.3, taken from X.509, is an example of such a hierarchy. The connected circles indicate 

the hierarchical relationship among the CAs; the associated boxes indicate certificates 

maintained in the directory for each CA entry. The directory entry for each CA includes two 

types of certificates: 

● Forward certificates: Certificates of X generated by other CAs 

● Reverse certificates: Certificates generated by X that are the certificates of other CAs 

 
Figure 4.3:X.509 Hierarchy: A hypothetical example 

In this example, user A can acquire the following certificates from the directory to establish a 

certification path to B: 

X<<W>> W <<V>> V <<Y>> <<Z>> Z <<B>> 

When A has obtained these certificates, it can unwrap the certification path in sequence to 

recover a trusted copy of B's public key. Using this public key, A can send encrypted messages 

to B. If A wishes to receive encrypted messages back from B, or to sign messages sent to B, 

then B will require A's public key, which can be obtained from the following certification path: 
Z<<Y>> Y <<V>> V <<W>> W <<X>>X <<A>> 

B can obtain this set of certificates from the directory, or A can provide them as part of its 

initial message to B. 
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4.1.3 Revocation of Certificates 

Recall from Figure 4.2 that each certificate includes a period of validity, much like a credit 

card. Typically, a new certificate is issued just before the expiration of the old one. In addition, 

it may be desirable on occasion to revoke a certificate before it expires, for one of the following 

reasons: 

1. The user's private key is assumed to be compromised. 

2. The user is no longer certified by this CA. 

3. The CA's certificate is assumed to be compromised. 

 

Each CA must maintain a list consisting of all revoked but not expired certificates issued by 

that CA, including both those issued to users and to other CAs. These lists should also be posted 

on the directory. 

Each certificate revocation list (CRL) posted to the directory is signed by the issuer and 

includes (Figure 4.2b) the issuer's name, the date the list was created, the date the next CRL is 

scheduled to be issued, and an entry for each revoked certificate. Each entry consists of the 

serial number of a certificate and revocation date for that certificate. Because serial numbers 

are unique within a CA, the serial number is sufficient to identify the certificate. 

When a user receives a certificate in a message, the user must determine whether the 

certificate has been revoked. The user could check the directory each time a certificate is 

received. To avoid the delays (and possible costs) associated with directory searches, it is likely 

that the user would maintain a local cache of certificates and lists of revoked certificates. 

 
4.1.4 X.509 Version 3 

The X.509 version 2 format does not convey all of the information that recent design and 

implementation experience has shown to be needed. lists the following requirements not 

satisfied by version 2: 

1. The Subject field is inadequate to convey the identity of a key owner to a public-key 

user. X.509 names may be relatively short and lacking in obvious identification details 

that may be needed by the user. 

2. The Subject field is also inadequate for many applications, which typically recognize 

entities by an Internet e-mail address, a URL, or some other Internet-related 

identification. 

3. There is a need to indicate security policy information. This enables a security 

application or function, such as IPSec, to relate an X.509 certificate to a given policy. 

4. There is a need to limit the damage that can result from a faulty or malicious CA by 

setting constraints on the applicability of a particular certificate. 

5. It is important to be able to identify different keys used by the same owner at different 

times. This feature supports key life cycle management, in particular the ability to 

update key pairs for users and CAs on a regular basis or under exceptional 

circumstances. 

 

Rather than continue to add fields to a fixed format, standards developers felt that a more 

flexible approach was needed. Thus, version 3 includes a number of optional extensions that 

may be added to the version 2 format. Each extension consists of an extension identifier, a 

criticality indicator, and an extension value. The criticality indicator indicates whether an 

extension can be safely ignored. If the indicator has a value of TRUE and an implementation 

does not recognize the extension, it must treat the certificate as invalid. 

The certificate extensions fall into three main categories: key and policy information, subject 

and issuer attributes, and certification path constraints. 
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4.1.5 Key and Policy Information 

These extensions convey additional information about the subject and issuer keys, plus 

indicators of certificate policy. A certificate policy is a named set of rules that indicates the 

applicability of a certificate to a particular community and/or class of application with common 

security requirements. For example, a policy might be applicable to the authentication of 

electronic data interchange (EDI) transactions for the trading of goods within a given price 

range. 

This area includes the following: 

● Authority key identifier: Identifies the public key to be used to verify the signature on this 

certificate or CRL. Enables distinct keys of the same CA to be differentiated. One use of this 

field is to handle CA key pair updating. 

● Subject key identifier: Identifies the public key being certified. Useful for subject key pair 

updating. Also, a subject may have multiple key pairs and, correspondingly, different 

certificates for different purposes (e.g., digital signature and encryption key agreement). 

● Key usage: Indicates a restriction imposed as to the purposes for which, and the policies 

under which, the certified public key may be used. May indicate one or more of the following: 

digital signature, nonrepudiation, key encryption, data encryption, key agreement, CA 

signature verification on certificates, CA signature verification on CRLs. 

● Private-key usage period: Indicates the period of use of the private key corresponding to 

the public key. Typically, the private key is used over a different period from the validity of 

the public key. For example, with digital signature keys, the usage period for the signing private 

key is typically shorter than that for the verifying public key. 

● Certificate policies: Certificates may be used in environments where multiple policies 

apply. This extension lists policies that the certificate is recognized as supporting, together with 

optional qualifier information. 

● Policy mappings: Used only in certificates for CAs issued by other CAs. Policy mappings 

allow an issuing CA to indicate that one or more of that issuer's policies can be considered 

equivalent to another policy used in the subject CA's domain. 

 
4.1.6 Certificate Subject and Issuer Attributes 

These extensions support alternative names, in alternative formats, for a certificate subject or 

certificate issuer and can convey additional information about the certificate subject, to increase 

a certificate user's confidence that the certificate subject is a particular person or entity. For 

example, information such as postal address, position within a corporation, or picture image 

may be required. 

The extension fields in this area include the following: 

● Subject alternative name: Contains one or more alternative names, using any of a variety 

of forms. This field is important for supporting certain applications, such as electronic mail, 

EDI, and IPSec, which may employ their own name forms. 

● Issuer alternative name: Contains one or more alternative names, using any of a variety of 

forms. 

● Subject directory attributes: Conveys any desired X.500 directory attribute values for the 

subject of this certificate. 

 

4.1.7 Certification Path Constraints 

These extensions allow constraint specifications to be included in certificates issued for CAs 

by other CAs. The constraints may restrict the types of certificates that can be issued by the 

subject CA or that may occur subsequently in a certification chain. 

The extension fields in this area include the following: 
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● Basic constraints: Indicates if the subject may act as a CA. If so, a certification path length 

constraint may be specified. 

● Name constraints: Indicates a name space within which all subject names in subsequent 

certificates in a certification path must be located. 

● Policy constraints: Specifies constraints that may require explicit certificate policy 

identification or inhibit policy mapping for the remainder of the certification path. 

 

4.2 Public-Key Infrastructure 
RFC 2822 (Internet Security Glossary) defines public-key infrastructure (PKI) as the set of 

hardware, software, people, policies, and procedures needed to create, manage, store, 

distribute, and revoke digital certificates based on asymmetric cryptography. The principal 

objective for developing a PKI is to enable secure, convenient, and efficient acquisition of 

public keys. The Internet Engineering Task Force (IETF) Public Key Infrastructure X.509 

(PKIX) working group has been the driving force behind setting up a formal (and generic) 

model based on X.509 that is suitable for deploying a certificate-based architecture on the 

Internet. This section describes the PKIX model. 

 

Figure 4.4 shows the interrelationship among the key elements of the PKIX model. These 

elements are 

● End entity: A generic term used to denote end users, devices (e.g., servers, routers), or any 

other entity that can be identified in the subject field of a public key certificate. End entities 

typically consume and/or support PKI-related services. 

● Certification authority (CA): The issuer of certificates and (usually) certificate revocation 

lists (CRLs). It may also support a variety of administrative functions, although these are 

often delegated to one or more Registration Authorities. 

● Registration authority (RA): An optional component that can assume a number of 

administrative functions from the CA. The RA is often associated with the End Entity 

registration process, but can assist in a number of other areas as well. 

● CRL issuer: An optional component that a CA can delegate to publish CRLs. 

● Repository: A generic term used to denote any method for storing certificates and CRLs so 

that they can be retrieved by End Entities. 

 

Figure 4.4: PKIX architecture model 
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4.2.1 PKIX Management Functions 

PKIX identifies a number of management functions that potentially need to be supported by 

management protocols. These are indicated in Figure 4.4 and include the following: 

● Registration: This is the process whereby a user first makes itself known to a CA (directly, 

or through an RA), prior to that CA issuing a certificate or certificates for that user. Registration 

begins the process of enrolling in a PKI. Registration usually involves some offline or online 

procedure for mutual authentication. Typically, the end entity is issued one or more shared 

secret keys used for subsequent authentication. 

● Initialization: Before a client system can operate securely, it is necessary to install key 

materials that have the appropriate relationship with keys stored elsewhere in the infrastructure. 

For example, the client needs to be securely initialized with the public key and other assured 

information of the trusted CA(s), to be used in validating certificate paths. 

● Certification: This is the process in which a CA issues a certificate for a user's public key, 

and returns that certificate to the user's client system and/or posts that certificate in a repository. 

● Key pair recovery: Key pairs can be used to support digital signature creation and 

verification, encryption and decryption, or both. When a key pair is used for 

encryption/decryption, it is important to provide a mechanism to recover the necessary 

decryption keys when normal access to the keying material is no longer possible, otherwise it 

will not be possible to recover the encrypted data. Loss of access to the decryption key can 

result from forgotten passwords/PINs, corrupted disk drives, damage to hardware tokens, and 

so on. Key pair recovery allows end entities to restore their encryption/decryption key pair from 

an authorized key backup facility (typically, the CA that issued the End Entity's certificate). 

● Key pair update: All key pairs need to be updated regularly (i.e., replaced with a new key 

pair) and new certificates issued. Update is required when the certificate lifetime expires and 

as a result of certificate revocation. 

● Revocation request: An authorized person advises a CA of an abnormal situation requiring 

certificate revocation. Reasons for revocation include private key compromise, change in 

affiliation, and name change. 

● Cross certification: Two CAs exchange information used in establishing a cross- 

certificate. A cross-certificate is a certificate issued by one CA to another CA that contains a 

CA signature key used for issuing certificates. 

4.2.2 PKIX Management Protocols 

The PKIX working group has defines two alternative management protocols between PKIX 

entities that support the management functions listed in the preceding subsection. RFC 2510 

defines the certificate management protocols (CMP). Within CMP, each of the management 

functions is explicitly identified by specific protocol exchanges. CMP is designed to be a 

flexible protocol able to accommodate a variety of technical, operational, and business models. 

RFC 2797 defines certificate management messages over CMS (CMC), where CMS 

refers to RFC 2630, cryptographic message syntax. CMC is built on earlier work and is 

intended to leverage existing implementations. Although all of the PKIX functions are 

supported, the functions do not all map into specific protocol exchanges. 
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4.3 Remote user-authentication principles 
User authentication is the fundamental security building block and the primary line of defense. 

User authentication is the basic for more types of access control & user accountability. RFC 

4949 defines user authentication as the process of verifying an identity claimed by or for a 

system entity 

This process consists of two steps: 

• Identification step – Presenting an identifier to the security system. 

• verification – presenting or generating authentication information that corroborates the 
binding between the entity and the identifier 

 

4.3.1 The NIST Model for electronic user authentication 

Figure 4.5: the NIST SP 800-63-2 E-authentication architectural model 
 

4.3.2 Means of User Authentication 

Four means of authenticating user's identity 

➢ based one something the individual 

⚫ something the individual knows - e.g. password, PIN 

⚫ something the individual possesses - e.g. key, token, smartcard 

⚫ something the individual is (static biometrics) - e.g. fingerprint, retina 

⚫ something the individual does (dynamic biometrics) - e.g. voice, sign 

can use alone or combined, all can provide user authentication but all have issues. 

 
4.3.3 Mutual Authentication 

An important application area is that of mutual authentication protocols. Such protocols enable 

communicating parties to satisfy themselves mutually about each other's identity and to 

exchange session keys. 

Central to the problem of authenticated key exchange are two issues: confidentiality 

and timeliness. To prevent masquerade and to prevent compromise of session keys, essential 

identification and session key information must be communicated in encrypted form. This 

requires the prior existence of secret or public keys that can be used for this purpose. The 

second issue, timeliness, is important because of the threat of message replays. Such replays, 

at worst, could allow an opponent to compromise a session key or successfully impersonate 

another party. At minimum, a successful replay can disrupt operations by presenting parties 

with messages that appear genuine but are not. 
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lists the following examples of replay attacks: 

● Simple replay: The opponent simply copies a message and replays it later. 

● Repetition that can be logged: An opponent can replay a time stamped message within 

the valid time window. 

● Repetition that cannot be detected: This situation could arise because the original message 

could have been suppressed and thus did not arrive at its destination; only the replay message 

arrives. 

● Backward replay without modification: This is a replay back to the message sender. This 

attack is possible if symmetric encryption is used and the sender cannot easily recognize the 

difference between messages sent and messages received on the basis of content. 

One approach to coping with replay attacks is to attach a sequence number to each 

message used in an authentication exchange. A new message is accepted only if its sequence 

number is in the proper order. The difficulty with this approach is that it requires each party 

to keep track of the last sequence number for each claimant it has dealt with. Because of this 

overhead, sequence numbers are generally not used for authentication and key exchange. 

Instead, one of the following two general approaches is used: 

● Timestamps: Party A accepts a message as fresh only if the message contains a timestamp 

that, in A's judgment, is close enough to A's knowledge of current time. This approach requires 

that clocks among the various participants be synchronized. 

● Challenge/response: Party A, expecting a fresh message from B, first sends B a nonce 

(challenge) and requires that the subsequent message (response) received from B contain the 

correct nonce value. 

It can be argued that the timestamp approach should not be used for connection oriented 

applications because of the inherent difficulties with this technique. First, some sort of protocol 

is needed to maintain synchronization among the various processor clocks. This protocol must 

be both fault tolerant, to cope with network errors, and secure, to cope with hostile attacks. 

Second, the opportunity for a successful attack will arise if there is a temporary loss of 

synchronization resulting from a fault in the clock mechanism of one of the parties. Finally, 

because of the variable and unpredictable nature of network delays, distributed clocks cannot 

be expected to maintain precise synchronization. Therefore, any timestamp-based procedure 

must allow for a window of time sufficiently large to accommodate network delays yet 

sufficiently small to minimize the opportunity for attack. 

On the other hand, the challenge-response approach is unsuitable for a connectionless 

type of application because it requires the overhead of a handshake before any connectionless 

transmission, effectively negating the chief characteristic of a connectionless transaction. For 

such applications, reliance on some sort of secure time server and a consistent attempt by 

each party to keep its clocks in synchronization may be the best approach. 

4.3.4 One-Way Authentication 

One application for which encryption is growing in popularity is electronic mail (e-mail). The 

very nature of electronic mail, and its chief benefit, is that it is not necessary for the sender and 

receiver to be online at the same time. Instead, the e-mail message is forwarded to the receiver's 

electronic mailbox, where it is buffered until the receiver is available to read it. 

The "envelope" or header of the e-mail message must be in the clear, so that the message 

can be handled by the store-and-forward e-mail protocol, such as the Simple Mail Transfer 

Protocol (SMTP) or X.400. However, it is often desirable that the mail-handling protocol not 

require access to the plaintext form of the message, because that would require trusting the 

mail-handling mechanism. 

Accordingly, the e-mail message should be encrypted such that the mail-handling 

system is not in possession of the decryption key. 
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A second requirement is that of authentication. Typically, the recipient wants some 

assurance that the message is from the alleged sender. 

4.4 Remote User-authentication using symmetric encryption 
A two-level hierarchy of symmetric encryption keys can be used to provide confidentiality for 

communication in a distributed environment. In general, this strategy involves the use of a 

trusted key distribution center (KDC). Each party in the network shares a secret key, known 

as a master key, with the KDC. The KDC is responsible for generating keys to be used for a 

short time over a connection between two parties, known as session keys, and for distributing 

those keys using the master keys to protect the distribution. This approach is quite common. 

Key distribution scenario illustrates a proposal initially put forth by Needham and 

Schroeder for secret key distribution using a KDC that includes authentication features. The 

protocol can be summarized as follows: 
 
 

Secret keys Ka and Kb are shared between A and the KDC and B and the KDC, 

respectively. The purpose of the protocol is to distribute securely a session key Ks to A and 

B. A securely acquires a new session key in step 2. The message in step 3 can be decrypted, 

and hence understood, only by B. Step 4 reflects B's knowledge of Ks, and step 5 assures B of 

A's knowledge of Ks and assures B that this is a fresh message because of the use of the nonce 

N2. The purpose of steps 4 and 5 is to prevent a certain type of replay attack. In particular, if 

an opponent is able to capture the message in step 3 and replay it, this might in some fashion 

disrupt operations at B. Despite the handshake of steps 4 and 5, the protocol is still vulnerable 

to a form of replay attack. Suppose that an opponent, X, has been able to compromise an old 

session key. Admittedly, this is a much more unlikely occurrence than that an opponent has 

simply observed and recorded step 3. Nevertheless, it is a potential security risk. X can 

impersonate A and trick B into using the old key by simply replaying step 

3. Unless B remembers indefinitely all previous session keys used with A, B will be unable to 

determine that this is a replay. If X can intercept the handshake message, step 4, then it can 

impersonate A's response, step 5. From this point on, X can send bogus messages to B that 

appear to B to come from A using an authenticated session key. 

Denning proposes to overcome this weakness by a modification to the Needham/ 

Schroeder protocol that includes the addition of a timestamp to steps 2 and 3. Her proposal 

assumes that the master keys, Ka and Kb are secure, and it consists of the following steps: 
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T is a timestamp that assures A and B that the session key has only just been generated. Thus, 

both A and B know that the key distribution is a fresh exchange. A and B can verify timeliness 

by checking that 
|Clock T| < t1 + t2 

where t1 is the estimated normal discrepancy between the KDC's clock and the local clock 

(at A or B) and t2 is the expected network delay time. Each node can set its clock against 

some standard reference source. Because the timestamp T is encrypted using the secure master 

keys, an opponent, even with knowledge of an old session key, cannot succeed because a 

replay of step 3 will be detected by B as untimely. 

A final point: Steps 4 and 5 were not included in the original presentation but were 

added Later. These steps confirm the receipt of the session key at B. 

The Denning protocol seems to provide an increased degree of security compared to 

the Needham/ Schroeder protocol. However, a new concern is raised: namely, that this new 

scheme requires reliance on clocks that are synchronized throughout the network. points out a 

risk involved. The risk is based on the fact that the distributed clocks can become 

unsynchronized as a result of sabotage on or faults in the clocks or the synchronization 

mechanism. 

The problem occurs when a sender's clock is ahead of the intended recipient's clock. 

In this case, an opponent can intercept a message from the sender and replay it later when the 

timestamp in the message becomes current at the recipient's site. This replay could cause 

unexpected results. Gong refers to such attacks as suppress-replay attacks. 

One way to counter suppress-replay attacks is to enforce the requirement that parties 

regularly check their clocks against the KDC's clock. The other alternative, which avoids the 

need for clock synchronization, is to rely on handshaking protocols using nonces. This latter 

alternative is not vulnerable to a suppress-replay attack because the nonces the recipient will 

choose in the future are unpredictable to the sender. The Needham/Schroeder protocol relies 

on nonces only but, as we have seen, has other vulnerabilities. An attempt is made to respond 

to the concerns about suppress-replay attacks and at the same time fix the problems in the 

Needham/Schroeder protocol. Subsequently, an inconsistency in this latter protocol was noted 

and an improved strategy 

The protocol is as follows: 
 

 
Let us follow this exchange step by step. 

1. A initiates the authentication exchange by generating a nonce, Na, and sending that plus its 

identifier to B in plaintext. This nonce will be returned to A in an encrypted message that 

includes the session key, assuring A of its timeliness. 

2. B alerts the KDC that a session key is needed. Its message to the KDC includes its identifier 

and a nonce, Nb This nonce will be returned to B in an encrypted message that includes the 

session key, assuring B of its timeliness. B's message to the KDC also includes a block 

encrypted with the secret key shared by B and the KDC. This block is used to instruct 
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the KDC to issue credentials to A; the block specifies the intended recipient of the credentials, 

a suggested expiration time for the credentials, and the nonce received from A. 

3. The KDC passes on to A B's nonce and a block encrypted with the secret key that B shares 

with the KDC. The block serves as a "ticket" that can be used by A for subsequent 

authentications, as will be seen. The KDC also sends to A a block encrypted with the secret 

key shared by A and the KDC. This block verifies that B has received A's initial message (IDB) 

and that this is a timely message and not a replay (Na) and it provides A with a session key 

(Ks) and the time limit on its use (Tb). 

4. A transmits the ticket to B, together with the B's nonce, the latter encrypted with the session 

key. The ticket provides B with the secret key that is used to decrypt E(Ks, Nb) to recover the 

nonce. The fact that B's nonce is encrypted with the session key authenticates that the message 

came from A and is not a replay. 

This protocol provides an effective, secure means for A and B to establish a session 

with a secure session key. Furthermore, the protocol leaves A in possession of a key that can 

be used for subsequent authentication to B, avoiding the need to contact the authentication 

server repeatedly. Suppose that A and B establish a session using the aforementioned protocol 

and then conclude that session. Subsequently, but within the time limit established by the 

protocol, A desires a new session with B. 

The following protocol ensues: 
 

When B receives the message in step 1, it verifies that the ticket has not expired. The 

newly generated nonces N'a and N'b assure each party that there is no replay attack. In all the 

foregoing, the time specified in Tb is a time relative to B's clock. Thus, this timestamp does not 

require synchronized clocks because B checks only self-generated timestamps. 

 
4.4.1 One-Way Authentication 

Using symmetric encryption, the decentralized key distribution scenario illustrated is 

impractical. This scheme requires the sender to issue a request to the intended recipient, await 

a response that includes a session key, and only then send the message. 

With some refinement, the KDC strategy illustrated is a candidate for encrypted 

electronic mail. Because we wish to avoid requiring that the recipient (B) be on line at the same 

time as the sender (A), steps 4 and 5 must be eliminated. For a message with content M, the 

sequence is as follows: 

This approach guarantees that only the intended recipient of a message will be able to read it. 

It also provides a level of authentication that the sender is A. As specified, the protocol does 

not protect against replays. Some measure of defense could be provided by including a 



Cryptography Module-4 

       Prepared by Divyashree H S Dept. Of CSE, BrCE 14 

 

 

timestamp with the message. However, because of the potential delays in the e-mail process, 

such timestamps may have limited usefulness. 

 

4.5 KERBEROS 
Kerberos is an authentication service developed as part of Project Athena at MIT. The problem 

that Kerberos addresses is this: Assume an open distributed environment in which users at 

workstations wish to access services on servers distributed throughout the network. We would 

like for servers to be able to restrict access to authorized users and to be able to authenticate 

requests for service. In this environment, a workstation cannot be trusted to identify its users 

correctly to network services. 

In particular, the following three threats exist: 

1. A user may gain access to a particular workstation and pretend to be another user 

operating from that workstation. 

2. A user may alter the network address of a workstation so that the requests sent from 

the altered workstation appear to come from the impersonated workstation. 

3. A user may eavesdrop on exchanges and use a replay attack to gain entrance to a 

server or to disrupt operations. 

 

In any of these cases, an unauthorized user may be able to gain access to services and data that 

he or she is not authorized to access. Rather than building in elaborate authentication protocols 

at each server, Kerberos provides a centralized authentication server whose function is to 

authenticate users to servers and servers to users. 

Unlike most other authentication schemes, Kerberos relies exclusively on symmetric 

encryption, making no use of public-key encryption. 

Two versions of Kerberos are in common use. Version 4 implementations still exist. 

Version 5 corrects some of the security deficiencies of version 4 and has been issued as a 

proposed Internet Standard (RFC 1510). 

 
4.5.1 Motivation 

If a set of users is provided with dedicated personal computers that have no network 

connections, then a user's resources and files can be protected by physically securing each 

personal computer. When these users instead are served by a centralized time-sharing system, 

the time-sharing operating system must provide the security. The operating system can enforce 

access control policies based on user identity and use the logon procedure to identify users. 

 

Today, neither of these scenarios is typical. More common is a distributed architecture 

consisting of dedicated user workstations (clients) and distributed or centralized servers. 

In this environment, three approaches to security can be envisioned: 

1. Rely on each individual client workstation to assure the identity of its user or users 

and rely on each server to enforce a security policy based on user identification (ID). 

2. Require that client systems authenticate themselves to servers, but trust the client 

system concerning the identity of its user. 

3. Require the user to prove his or her identity for each service invoked. Also require 

that servers prove their identity to clients. 

 

In a small, closed environment, in which all systems are owned and operated by a single 

organization, the first or perhaps the second strategy may suffice. But in a more open 

environment, in which network connections to other machines are supported, the third 

approach is needed to protect user information and resources housed at the server. Kerberos 
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supports this third approach. Kerberos assumes a distributed client/server architecture and 

employs one or more Kerberos servers to provide an authentication service. 

 

The first published report on Kerberos listed the following requirements: 

● Secure: A network eavesdropper should not be able to obtain the necessary information to 

impersonate a user. More generally, Kerberos should be strong enough that a potential 

opponent does not find it to be the weak link. 

● Reliable: For all services that rely on Kerberos for access control, lack of availability of 

the Kerberos service means lack of availability of the supported services. Hence, Kerberos 

should be highly reliable and should employ a distributed server architecture, with one system 

able to back up another. 

● Transparent: Ideally, the user should not be aware that authentication is taking place, 

beyond the requirement to enter a password. 

● Scalable: The system should be capable of supporting large numbers of clients and servers. 

This suggests a modular, distributed architecture. 

To support these requirements, the overall scheme of Kerberos is that of a trusted third-

party authentication service that uses a protocol based on that proposed by Needham and 

Schroeder. It is trusted in the sense that clients and servers trust Kerberos to mediate their 

mutual authentication. Assuming the Kerberos protocol is well designed, then the 

authentication service is secure if the Kerberos server itself is secure. 

 

4.5.2 Kerberos Version 4 
Version 4 of Kerberos makes use of DES, in a rather elaborate protocol, to provide the 

authentication service. Viewing the protocol as a whole, it is difficult to see the need for the 

many elements contained therein. Therefore, we adopt a strategy used by Bill Bryant of Project 

Athena and build up to the full protocol by looking first at several hypothetical dialogues. Each 

successive dialogue adds additional complexity to counter security vulnerabilities revealed in 

the preceding dialogue. 

After examining the protocol, we look at some other aspects of version 4. 

 
 

4.5.3 A Simple Authentication Dialogue 

In an unprotected network environment, any client can apply to any server for service. The 

obvious security risk is that of impersonation. An opponent can pretend to be another client 

and obtain unauthorized privileges on server machines. To counter this threat, servers must be 

able to confirm the identities of clients who request service. Each server can be required to 

undertake this task for each client/server interaction, but in an open environment, this places a 

substantial burden on each server. 

An alternative is to use an authentication server (AS) that knows the passwords of all 

users and stores these in a centralized database. In addition, the AS shares a unique secret key 

with each server. These keys have been distributed physically or in some other secure manner. 

Consider the following hypothetical dialogue: 
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In this scenario, the user logs on to a workstation and requests access to server V. The client 

module C in the user's workstation requests the user's password and then sends a message to 

the AS that includes the user's ID, the server's ID, and the user's password. The AS checks its 

database to see if the user has supplied the proper password for this user ID and whether this 

user is permitted access to server V. If both tests are passed, the AS accepts the user as authentic 

and must now convince the server that this user is authentic. To do so, the AS creates a ticket 

that contains the user's ID and network address and the server's ID. This ticket is encrypted 

using the secret key shared by the AS and this server. This ticket is then sent back to C. 

Because the ticket is encrypted, it cannot be altered by C or by an opponent. With this 

ticket, C can now apply to V for service. C sends a message to V containing C's ID and the 

ticket. V decrypts the ticket and verifies that the user ID in the ticket is the same as the 

unencrypted user ID in the message. If these two match, the server considers the user 

authenticated and grants the requested service. 

Each of the ingredients of message (3) is significant. The ticket is encrypted to prevent 

alteration or forgery. The server's ID (IDV) is included in the ticket so that the server 
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can verify that it has decrypted the ticket properly. IDC is included in the ticket to indicate that 

this ticket has been issued on behalf of C. Finally, ADC serves to counter the following threat. 

An opponent could capture the ticket transmitted in message (2), then use the name IDC and 

transmit a message of form (3) from another workstation. 

The server would receive a valid ticket that matches the user ID and grant access to the 

user on that other workstation. To prevent this attack, the AS includes in the ticket the network 

address from which the original request came. Now the ticket is valid only if it is transmitted 

from the same workstation that initially requested the ticket. 

 
4.5.4 A More Secure Authentication Dialogue 

Although the foregoing scenario solves some of the problems of authentication in an open 

network environment, problems remain. Two in particular stand out. First, we would like to 

minimize the number of times that a user has to enter a password. Suppose each ticket can be 

used only once. If user C logs on to a workstation in the morning and wishes to check his or 

her mail at a mail server, C must supply a password to get a ticket for the mail server. If C 

wishes to check the mail several times during the day, each attempt requires reentering the 

password. We can improve matters by saying that tickets are reusable. 

For a single logon session, the workstation can store the mail server ticket after it is 

receive and use it on behalf of the user for multiple accesses to the mail server. However, under 

this scheme it remains the case that a user would need a new ticket for every different service. 

If a user wished to access a print server, a mail server, a file server, and so on, the first 

instance of each access would require a new ticket and hence require the user to enter the 

password. 

The second problem is that the earlier scenario involved a plaintext transmission of the 

password [message (1)]. An eavesdropper could capture the password and use any service 

accessible to the victim. 

To solve these additional problems, we introduce a scheme for avoiding plaintext 

passwords and a new server, known as the ticket-granting server (TGS). The new but still 

hypothetical scenario is as follows: 

The new service, TGS, issues tickets to users who have been authenticated to AS. Thus, 

the user first requests a ticket-granting ticket (Tickettgs) from the AS. The client module in the 

user workstation saves this ticket. Each time the user requires access to a new service, the client 

applies to the TGS, using the ticket to authenticate itself. The TGS then grants a ticket for the 

particular service. The client saves each service-granting ticket and uses it to authenticate its 

user to a server each time a particular service is requested. 

Let us look at the details of this scheme: 

1. The client requests a ticket-granting ticket on behalf of the user by sending its user's ID and 

password to the AS, together with the TGS ID, indicating a request to use the TGS service. 
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2. The AS responds with a ticket that is encrypted with a key that is derived from the user's 

password. When this response arrives at the client, the client prompts the user for his or her 

password, generates the key, and attempts to decrypt the incoming message. If the correct 

password is supplied, the ticket is successfully recovered. 

Because only the correct user should know the password, only the correct user can 

recover the ticket. Thus, we have used the password to obtain credentials from Kerberos 

without having to transmit the password in plaintext. The ticket itself consists of the ID and 

network address of the user, and the ID of the TGS. This corresponds to the first scenario. 

The idea is that the client can use this ticket to request multiple service-granting tickets. So the 

ticket-granting ticket is to be reusable. 

However, we do not wish an opponent to be able to capture the ticket and use it. 

Consider the following scenario: An opponent captures the login ticket and waits until the user 

has logged off his or her workstation. Then the opponent either gains access to that workstation 

or configures his workstation with the same network address as that of the victim. The 

opponent would be able to reuse the ticket to spoof the TGS. 

To counter this, the ticket includes a timestamp, indicating the date and time at which 

the ticket was issued, and a lifetime, indicating the length of time for which the ticket is valid 

(e.g., eight hours). Thus, the client now has a reusable ticket and need not bother the user for 

a password for each new service request. Finally, note that the ticket-granting ticket is 

encrypted with a secret key known only to the AS and the TGS. This prevents alteration of 

the ticket. The ticket is reencrypted with a key based on the user's password. This assures that 

the ticket can be recovered only by the correct user, providing the authentication. 

Now that the client has a ticket-granting ticket, access to any server can be obtained with steps 

3 and 4: 

3. The client requests a service-granting ticket on behalf of the user. For this purpose, the client 

transmits a message to the TGS containing the user's ID, the ID of the desired service, and the 

ticket-granting ticket. 

4. The TGS decrypts the incoming ticket and verifies the success of the decryption by the 

presence of its ID. It checks to make sure that the lifetime has not expired. Then it compares 

the user ID and network address with the incoming information to authenticate the user. If the 

user is permitted access to the server V, the TGS issues a ticket to grant access to the requested 

service. 

The service-granting ticket has the same structure as the ticket-granting ticket. Indeed, 

because the TGS is a server, we would expect that the same elements are needed to authenticate 

a client to the TGS and to authenticate a client to an application server. Again, the ticket 

contains a timestamp and lifetime. 

If the user wants access to the same service at a later time, the client can simply use the 

previously acquired service-granting ticket and need not bother the user for a password. Note 

that the ticket is encrypted with a secret key (Kv) known only to the TGS and the server, 

preventing alteration. 

Finally, with a particular service-granting ticket, the client can gain access to the corresponding 

service with step 5: 

5. The client requests access to a service on behalf of the user. For this purpose, the client 

transmits a message to the server containing the user's ID and the service-granting ticket. The 

server authenticates by using the contents of the ticket. 

 

This new scenario satisfies the two requirements of only one password query per user session 

and protection of the user password. 



Cryptography Module-4 

       Prepared by Divyashree H S Dept. Of CSE, BrCE 19 

 

 

4.5.5 The Version 4 Authentication Dialogue 

Although the foregoing scenario enhances security compared to the first attempt, two 

additional problems remain. The heart of the first problem is the lifetime associated with the 

ticket-granting ticket. If this lifetime is very short (e.g., minutes), then the user will be 

repeatedly asked for a password. 

If the lifetime is long (e.g., hours), then an opponent has a greater opportunity for replay. 

An opponent could eavesdrop on the network and capture a copy of the ticket- granting ticket 

and then wait for the legitimate user to log out. Then the opponent could forge the legitimate 

user's network address and send the message of step (3) to the TGS. This would give the 

opponent unlimited access to the resources and files available to the legitimate user. 

Similarly, if an opponent captures a service-granting ticket and uses it before it expires, 

the opponent has access to the corresponding service. Thus, we arrive at an additional 

requirement. A network service (the TGS or an application service) must be able to prove that 

the person using a ticket is the same person to whom that ticket was issued. 

The second problem is that there may be a requirement for servers to authenticate 

themselves to users. Without such authentication, an opponent could sabotage the configuration 

so that messages to a server were directed to another location. The false server would then be 

in a position to act as a real server and capture any information from the user and deny the true 

service to the user. 

We examine these problems in turn and refer to Table 4.1, which shows the actual 

Kerberos protocol. 

Table 4.1: Summary of Kerberos Version 4 Message Exchanges 
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First, consider the problem of captured ticket-granting tickets and the need to determine that 

the ticket presenter is the same as the client for whom the ticket was issued. The threat is that 

an opponent will steal the ticket and use it before it expires. To get around this problem, let us 

have the AS provide both the client and the TGS with a secret piece of information in a 

secure manner. Then the client can prove its identity to the TGS by revealing the secret 

information, again in a secure manner. An efficient way of accomplishing this is to use an 

encryption key as the secure information; this is referred to as a session key in Kerberos. 

Table 4.1a shows the technique for distributing the session key. As before, the client 

sends a message to the AS requesting access to the TGS. The AS responds with a message, 

encrypted with a key derived from the user's password (Kc) that contains the ticket. The 

encrypted message also contains a copy of the session key, Kc,tgs, where the subscripts indicate 

that this is a session key for C and TGS. Because this session key is inside the message 

encrypted with Kc, only the user's client can read it. The same session key is included in the 

ticket, which can be read only by the TGS. Thus, the session key has been securely delivered 

to both C and the TGS. 

Note that several additional pieces of information have been added to this first phase of 

the dialogue. Message (1) includes a timestamp, so that the AS knows that the message is 

timely. Message (2) includes several elements of the ticket in a form accessible to C. This 

enables C to confirm that this ticket is for the TGS and to learn its expiration time. 

Armed with the ticket and the session key, C is ready to approach the TGS. As before, 

C sends the TGS a message that includes the ticket plus the ID of the requested service 

(message (3) in Table 4.1b). In addition, C transmits an authenticator, which includes the ID 

and address of C's user and a timestamp. Unlike the ticket, which is reusable, the authenticator 

is intended for use only once and has a very short lifetime. The TGS can decrypt the ticket 

with the key that it shares with the AS. This ticket indicates that user C has been provided with 

the session key Kc,tgs. In effect, the ticket says, "Anyone who uses Kc,tgs must be C." The 

TGS uses the session key to decrypt the authenticator. The TGS can then check the name and 

address from the authenticator with that of the ticket and with the network address of the 

incoming message. If all match, then the TGS is assured that the sender of the ticket is indeed 

the ticket's real owner. 

In effect, the authenticator says, "At time TS3, I hereby use Kc,tgs." Note that the ticket 

does not prove anyone's identity but is a way to distribute keys securely. It is the authenticator 

that proves the client's identity. Because the authenticator can be used only once and has a short 

lifetime, the threat of an opponent stealing both the ticket and the authenticator for presentation 

later is countered. 

The reply from the TGS, in message (4), follows the form of message (2). The message 

is encrypted with the session key shared by the TGS and C and includes a session key to be 

shared between C and the server V, the ID of V, and the timestamp of the ticket. The ticket 

itself includes the same session key. C now has a reusable service-granting ticket for V. When 

C presents this ticket, as shown in message (5), it also sends an authenticator. The server can 

decrypt the ticket, recover the session key, and decrypt the authenticator. 

If mutual authentication is required, the server can reply as shown in message (6) of Table 

4.1. The server returns the value of the timestamp from the authenticator, incremented by 1, 

and encrypted in the session key. C can decrypt this message to recover the incremented 

timestamp. Because the message was encrypted by the session key, C is assured that it could 

have been created only by V. The contents of the message assure C that this is not a replay of 

an old reply. 

Finally, at the conclusion of this process, the client and server share a secret key. This 

key can be used to encrypt future messages between the two or to exchange a new random 

session key for that purpose. 
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Figure 4.6: Overview of Kerberos 

 

Figure 4.7: Kerberos Exchanges 
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Table 4.2 summarizes the justification for each of the elements in the Kerberos protocol. 

Table 4.2: Rationale for the elements of the Kerberos Version 4 protocol. 
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4.5.6 Kerberos Realms and Multiple Kerberi 

A full-service Kerberos environment consisting of a Kerberos server, a number of clients, and 

a number of application servers requires the following: 

1. The Kerberos server must have the user ID and hashed passwords of all participating 

users in its database. All users are registered with the Kerberos server. 

2. The Kerberos server must share a secret key with each server. All servers are 

registered with the Kerberos server. 
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Such an environment is referred to as a Kerberos realm. The concept of realm can be 

explained as follows. A Kerberos realm is a set of managed nodes that share the same Kerberos 

database. The Kerberos database resides on the Kerberos master computer system, which 

should be kept in a physically secure room. A read-only copy of the Kerberos database might 

also reside on other Kerberos computer systems. However, all changes to the database must be 

made on the master computer system. 

Changing or accessing the contents of a Kerberos database requires the Kerberos master 

password. A related concept is that of a Kerberos principal, which is a service or user that is 

known to the Kerberos system. Each Kerberos principal is identified by its principal name. 

Principal names consist of three parts: a service or user name, an instance name, and a realm 

name 

Networks of clients and servers under different administrative organizations typically 

constitute different realms. That is, it generally is not practical, or does not conform to 

administrative policy, to have users and servers in one administrative domain registered with 

a Kerberos server elsewhere. However, users in one realm may need access to servers in other 

realms, and some servers may be willing to provide service to users from other realms, provided 

that those users are authenticated. 

Kerberos provides a mechanism for supporting such interrealm authentication. For two realms 

to support interrealm authentication, a third requirement is added: 

3. The Kerberos server in each interoperating realm shares a secret key with the server in 

the other realm. The two Kerberos servers are registered with each other. 

The scheme requires that the Kerberos server in one realm trust the Kerberos server in the 

other realm to authenticate its users. Furthermore, the participating servers in the second 

realm must also be willing to trust the Kerberos server in the first realm. 

With these ground rules in place, we can describe the mechanism as follows (Figure 4. ): 

A user wishing service on a server in another realm needs a ticket for that server. The user's 

client follows the usual procedures to gain access to the local TGS and then requests a ticket- 

granting ticket for a remote TGS (TGS in another realm). The client can then apply to the 

remote TGS for a service-granting ticket for the desired server in the realm of the remote TGS. 

 

Figure 4.8: Request for service in another realm 
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The details of the exchanges illustrated in Figure 4.8 are as follows (compare Table 4.1): 
 
 

 

 

 
The ticket presented to the remote server (Vrem) indicates the realm in which the user was 

originally authenticated. The server chooses whether to honor the remote request. 

One problem presented by the foregoing approach is that it does not scale well to many 

realms. If there are N realms, then there must be N(N 1)/2 secure key exchanges so that each 

Kerberos realm can interoperate with all other Kerberos realms. 

4.5.7 Kerberos Version 5 

Kerberos Version 5 is specified in RFC 1510 and provides a number of improvements over 

version 4. To begin, we provide an overview of the changes from version 4 to version 5 and 

then look at the version 5 protocol. 

 
Differences between Versions 4 and 5 

Version 5 is intended to address the limitations of version 4 in two areas: environmental 

shortcomings and technical deficiencies. Let us briefly summarize the improvements in each 

area. 

Kerberos Version 4 was developed for use within the Project Athena environment and, 

accordingly, did not fully address the need to be of general purpose. This led to the following 

environmental shortcomings: 

1. Encryption system dependence: Version 4 requires the use of DES. Export restriction 

on DES as well as doubts about the strength of DES were thus of concern. In version 5, 

ciphertext is tagged with an encryption type identifier so that any encryption technique 

may be used. Encryption keys are tagged with a type and a length, allowing the same 

key to be used in different algorithms and allowing the specification of different 

variations on a given algorithm. 

2. Internet protocol dependence: Version 4 requires the use of Internet Protocol (IP) 

addresses. Other address types, such as the ISO network address, are not 

accommodated. Version 5 network addresses are tagged with type and length, allowing 

any network address type to be used. 

3. Message byte ordering: In version 4, the sender of a message employs a byte ordering 

of its own choosing and tags the message to indicate least significant byte in lowest 

address or most significant byte in lowest address. This techniques works but does not 

follow established conventions. In version 5, all message structures are defined using 

Abstract Syntax Notation One (ASN.1) and Basic Encoding Rules (BER), which 

provide an unambiguous byte ordering. 

4. Ticket lifetime: Lifetime values in version 4 are encoded in an 8-bit quantity in units 

of five minutes. Thus, the maximum lifetime that can be expressed is 28 x 5 = 1280 

minutes, or a little over 21 hours. This may be inadequate for some applications (e.g., 

a long-running simulation that requires valid Kerberos credentials throughout 
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execution). In version 5, tickets include an explicit start time and end time, allowing 

tickets with arbitrary lifetimes. 

5. Authentication forwarding: Version 4 does not allow credentials issued to one client 

to be forwarded to some other host and used by some other client. This capability would 

enable a client to access a server and have that server access another server on behalf 

of the client. For example, a client issues a request to a print server that then accesses 

the client's file from a file server, using the client's credentials for access. Version 5 

provides this capability. 

6. Interrealm authentication: In version 4, interoperability among N realms requires on 

the order of N2 Kerberos-to-Kerberos relationships, as described earlier. Version 5 

supports a method that requires fewer relationships, as described shortly. 

 
 

Apart from these environmental limitations, there are technical deficiencies in the version 4 

protocol itself. Most of these deficiencies were documented, and version 5 attempts to address 

these. The deficiencies are the following: 

1. Double encryption: Note in Table 4.1 [messages (2) and (4)] that tickets provided to 

clients are encrypted twice, once with the secret key of the target server and then again 

with a secret key known to the client. The second encryption is not necessary and is 

computationally wasteful. 

2. PCBC encryption: Encryption in version 4 makes use of a nonstandard mode of DES 

known as propagating cipher block chaining (PCBC). It has been demonstrated that this 

mode is vulnerable to an attack involving the interchange of ciphertext blocks. PCBC 

was intended to provide an integrity check as part of the encryption operation. Version 

5 provides explicit integrity mechanisms, allowing the standard CBC mode to be used 

for encryption. In particular, a checksum or hash code is attached to the message prior 

to encryption using CBC. 

3. Session keys: Each ticket includes a session key that is used by the client to encrypt the 

authenticator sent to the service associated with that ticket. In addition, the session key 

may subsequently be used by the client and the server to protect messages passed during 

that session. However, because the same ticket may be used repeatedly to gain service 

from a particular server, there is the risk that an opponent will replay messages from 

an old session to the client or the server. In version 5, it is possible for a client and 

server to negotiate a subsession key, which is to be used only for that one connection. 

A new access by the client would result in the use of a new subsession key. 

4. Password attacks: Both versions are vulnerable to a password attack. The message 

from the AS to the client includes material encrypted with a key based on the client's 

password. An opponent can capture this message and attempt to decrypt it by trying 

various passwords. If the result of a test decryption is of the proper form, then the 

opponent has discovered the client's password and may subsequently use it to gain 

authentication credentials from Kerberos. This is the same type of password attack, with 

the same kinds of countermeasures being applicable. Version 5 does provide a 

mechanism known as preauthentication, which should make password attacks more 

difficult, but it does not prevent them. 

 
4.5.8 The Version 5 Authentication Dialogue 

Table 4.3 summarizes the basic version 5 dialogue. This is best explained by comparison with 

version 4 (Table 4.1). 
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Table 4.3: Summary of Kerberos Version 5 Message Exchanges 

 
 

First, consider the authentication service exchange. Message (1) is a client request for a ticket 

granting ticket. As before, it includes the ID of the user and the TGS. The following new 

elements are added: 

● Realm: Indicates realm of user 

● Options: Used to request that certain flags be set in the returned ticket 

● Times: Used by the client to request the following time settings in the ticket: 

from: the desired start time for the requested ticket 

till: the requested expiration time for the requested ticket 

rtime: requested renew-till time 

● Nonce: A random value to be repeated in message (2) to assure that the response is fresh 

and has not been replayed by an opponent Message (2) returns a ticket-granting ticket, 

identifying information for the client, and a block encrypted using the encryption key based 

on the user's password. This block includes the session key to be used between the client and 

the TGS, times specified in message (1), the nonce from message (1), and TGS identifying 

information. The ticket itself includes the session key, identifying information for the client, 

the requested time values, and flags that reflect the status of this ticket and the requested 

options. 
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These flags introduce significant new functionality to version 5. For now, we defer a 

discussion of these flags and concentrate on the overall structure of the version 5 protocol. 

Let us now compare the ticket-granting service exchange for versions 4 and 5. We 

see that message (3) for both versions includes an authenticator, a ticket, and the name of the 

requested service. In addition, version 5 includes requested times and options for the ticket and 

a nonce, all with functions similar to those of message (1). The authenticator itself is essentially 

the same as the one used in version 4. 

Message (4) has the same structure as message (2), returning a ticket plus information 

needed by the client, the latter encrypted with the session key now shared by the client and 

the TGS. 

 

Finally, for the client/server authentication exchange, several new features appear in version 

5. In message (5), the client may request as an option that mutual authentication is required. 

The authenticator includes several new fields as follows: 

● Subkey: The client's choice for an encryption key to be used to protect this specific 

application session. If this field is omitted, the session key from the ticket (Kc,v) is used. 

● Sequence number: An optional field that specifies the starting sequence number to be used 

by the server for messages sent to the client during this session. Messages may be sequence 

numbered to detect replays. 

If mutual authentication is required, the server responds with message (6). This message 

includes the timestamp from the authenticator. Note that in version 4, the timestamp was 

incremented by one. This is not necessary in version 5 because the nature of the format of 

messages is such that it is not possible for an opponent to create message (6) without knowledge 

of the appropriate encryption keys. The subkey field, if present, overrides the subkey field, if 

present, in message (5). The optional sequence number field specifies the starting sequence 

number to be used by the client. 

 
4.5.9 Ticket Flags 

The flags field included in tickets in version 5 supports expanded functionality compared to 

that available in version 4. Table 4.4 summarizes the flags that may be included in a ticket. 

Table 4.4. Kerberos Version 5 Flags 
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The INITIAL flag indicates that this ticket was issued by the AS, not by the TGS. When a client 

requests a service-granting ticket from the TGS, it presents a ticket-granting ticket obtained 

from the AS. In version 4, this was the only way to obtain a service-granting ticket. Version 5 

provides the additional capability that the client can get a service-granting ticket directly from 

the AS. The utility of this is as follows: A server, such as a password-changing server, may 

wish to know that the client's password was recently tested. 

The PRE-AUTHENT flag, if set, indicates that when the AS received the initial request 

[message (1)], it authenticated the client before issuing a ticket. The exact form of this 

preauthentication is left unspecified. As an example, the MIT implementation of version 5 has 

encrypted timestamp preauthentication, enabled by default. When a user wants to get a ticket, 

it has to send to the AS a preauthentication block containing a random confounder, a version 

number, and a timestamp, encrypted in the client's password-based key. The AS decrypts the 

block and will not send a ticket-granting ticket back unless the timestamp in the 

preauthentication block is within the allowable time skew (time interval to account for clock 

drift and network delays). Another possibility is the use of a smart card that generates 

continually changing passwords that are included in the preauthenticated messages. 

The passwords generated by the card can be based on a user's password but be 

transformed by the card so that, in effect, arbitrary passwords are used. This prevents an 

attack based on easily guessed passwords. If a smart card or similar device was used, this is 

indicated by the HW-AUTHENT flag. When a ticket has a long lifetime, there is the potential 

for it to be stolen and used by an opponent for a considerable period. If a short lifetime is used 

to lessen the threat, then overhead is involved in acquiring new tickets. In the case of a ticket-

granting ticket, the client would either have to store the user's secret key, which is clearly risky, 

or repeatedly ask the user for a password. 

A compromise scheme is the use of renewable tickets. A ticket with the RENEWABLE 

flag set includes two expiration times: one for this specific ticket and one that is the latest 

permissible value for an expiration time. A client can have the ticket renewed by presenting it 

to the TGS with a requested new expiration time. If the new time is within the limit of the latest 

permissible value, the TGS can issue a new ticket with a new session time and a later specific 

expiration time. The advantage of this mechanism is that the TGS may refuse to renew a ticket 

reported as stolen. A client may request that the AS provide a ticket- granting ticket with the 

MAY-POSTDATE flag set. The client can then use this ticket to request a ticket that is flagged 

as POSTDATED and INVALID from the TGS. Subsequently, the client may submit the 

postdated ticket for validation. 

This scheme can be useful for running a long batch job on a server that requires a ticket 

periodically. The client can obtain a number of tickets for this session at once, with spread-out 

time values. All but the first ticket are initially invalid. When the execution reaches a point in 

time when a new ticket is required, the client can get the appropriate ticket validated. With this 

approach, the client does not have to repeatedly use its ticketgranting ticket to obtain a service-

granting ticket. 

In version 5 it is possible for a server to act as a proxy on behalf of a client, in effect 

adopting the credentials and privileges of the client to request a service from another server. 

If a client wishes to use this mechanism, it requests a ticket-granting ticket with the 

PROXIABLE flag set. When this ticket is presented to the TGS, the TGS is permitted to issue 

a service-granting ticket with a different network address; this latter ticket will have its PROXY 

flag set. An application receiving such a ticket may accept it or require additional authentication 

to provide an audit trail. 

The proxy concept is a limited case of the more powerful forwarding procedure. If a 

ticket is set with the FORWARDABLE flag, a TGS can issue to the requestor a ticket- granting 

ticket with a different network address and the FORWARDED flag set. This ticket 
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can then be presented to a remote TGS. This capability allows a client to gain access to a server 

on another realm without requiring that each Kerberos maintain a secret key with Kerberos 

servers in every other realm. For example, realms could be structured hierarchically. Then a 

client could walk up the tree to a common node and then back down to reach a target realm. 

Each step of the walk would involve forwarding a ticket-granting ticket to the next TGS in the 

path. 

 

4.6 Remote User-authentication using asymmetric encryption 

 
Mutual authentication 

we presented one approach to the use of public-key encryption for the purpose of session key 

distribution. This protocol assumes that each of the two parties is in possession of the current 

public key of the other. It may not be practical to require this assumption. 

A protocol using timestamps is provided: 

 
 

In this case, the central system is referred to as an authentication server (AS), because it is not 

actually responsible for secret key distribution. Rather, the AS provides public-key certificates. 

The session key is chosen and encrypted by A; hence, there is no risk of exposure by the AS. 

The timestamps protect against replays of compromised keys. 

This protocol is compact but, as before, requires synchronization of clocks. Another 

approach, proposed by Woo and Lam, makes use of nonces. 

The protocol consists of the following steps: 

 

 
In step 1, A informs the KDC of its intention to establish a secure connection with B. The KDC 

returns to A a copy of B's public-key certificate (step 2). Using B's public key, A 
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informs B of its desire to communicate and sends a nonce Na (step 3). In step 4, B asks the 

KDC for A's public-key certificate and requests a session key; B includes A's nonce so that the 

KDC can stamp the session key with that nonce. The nonce is protected using the KDC's public 

key. In step 5, the KDC returns to B a copy of A's public-key certificate, plus the information 

{Na, Ks, IDB}. This information basically says that Ks is a secret key generated by the KDC 

on behalf of B and tied to Na; the binding of Ks and Na will assure A that Ks is fresh. This 

triple is encrypted, using the KDC's private key, to allow B to verify that the triple is in fact 

from the KDC. It is also encrypted using B's public key, so that no other entity may use the 

triple in an attempt to establish a fraudulent connection with A. In step 6, the triple 

{Na, Ks, IDB}, still encrypted with the KDC's private key, is relayed to A, together with a 

nonce Nb generated by B. All the foregoing are encrypted using A's public key. A retrieves the 

session key Ks and uses it to encrypt Nb and return it to B. This last message assures B of A's 

knowledge of the session key. 

 

This seems to be a secure protocol that takes into account the various attacks. However, 

the authors themselves spotted a flaw and submitted a revised version of the algorithm 
 

 
The identifier of A, IDA, is added to the set of items encrypted with the KDC's private key in 

steps 5 and 6. This binds the session key Ks to the identities of the two parties that will be 

engaged in the session. 

This inclusion of IDA accounts for the fact that the nonce value Na is considered unique 

only among all nonces generated by A, not among all nonces generated by all parties. Thus, it 

is the pair {IDA, Na} that uniquely identifies the connection request of A. 

In both this example and the protocols described earlier, protocols that appeared secure 

were revised after additional analysis. These examples highlight the difficulty of getting things 

right in the area of authentication. 

 

4.6.1 One-Way Authentication 

We have already presented public-key encryption approaches that are suited to electronic mail, 

including the straightforward encryption of the entire message for confidentiality, 

authentication, or both. These approaches require that either the sender know the recipient's 

public key (confidentiality) or the recipient know the sender's public key (authentication) or 

both (confidentiality plus authentication). In addition, the public-key algorithm must be applied 

once or twice to what may be a long message. 

If confidentiality is the primary concern, then the following may be more efficient: 
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In this case, the message is encrypted with a one-time secret key. A also encrypts this one- time 

key with B's public key. Only B will be able to use the corresponding private key to recover 

the one-time key and then use that key to decrypt the message. This scheme is more efficient 

than simply encrypting the entire message with B's public key. 

If authentication is the primary concern, then a digital signature may suffice, as was illustrated 
 

This method guarantees that A cannot later deny having sent the message. However, this 

technique is open to another kind of fraud. Bob composes a message to his boss Alice that 

contains an idea that will save the company money. He appends his digital signature and sends 

it into the e-mail system. Eventually, the message will get delivered to Alice's mailbox. But 

suppose that Max has heard of Bob's idea and gains access to the mail queue before delivery. 

He finds Bob's message, strips off his signature, appends his, and requeues the message to be 

delivered to Alice. Max gets credit for Bob's idea. 

To counter such a scheme, both the message and signature can be encrypted with the 

recipient's public key: 

 

The latter two schemes require that B know A's public key and be convinced that it is timely. 

An effective way to provide this assurance is the digital certificate. Now we have 
 
 

 

In addition to the message, A sends B the signature, encrypted with A's private key, and A's 

certificate, encrypted with the private key of the authentication server. The recipient of the 

message first uses the certificate to obtain the sender's public key and verify that it is authentic 

and then uses the public key to verify the message itself. If confidentiality is required, then the 

entire message can be encrypted with B's public key. Alternatively, the entire message can be 

encrypted with a one-time secret key; the secret key is also transmitted, encrypted with B's 

public key. 

 

4.7 Electronic Mail Security 
4.7.1 Pretty Good Privacy 

 

PGP is a remarkable phenomenon. Largely the effort of a single person, Phil Zimmermann, 

PGP provides a confidentiality and authentication service that can be used for electronic mail 

and file storage applications. In essence, Zimmermann has done the following: 

1. Selected the best available cryptographic algorithms as building blocks 

2. Integrated these algorithms into a general-purpose application that is independent of 

operating system and processor and that is based on a small set of easy-to-use commands 

3. Made the package and its documentation, including the source code, freely available via 

the Internet, bulletin boards, and commercial networks such as AOL (America On Line) 
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4. Entered into an agreement with a company (Viacrypt, now Network Associates) to provide 

a fully compatible, low-cost commercial version of PGP 

PGP has grown explosively and is now widely used. A number of reasons can be cited for 

this growth: 

1. It is available free worldwide in versions that run on a variety of platforms, including 

Windows, UNIX, Macintosh, and many more. In addition, the commercial version 

satisfies users who want a product that comes with vendor support. 

2. It is based on algorithms that have survived extensive public review and are considered 

extremely secure. Specifically, the package includes RSA, DSS, and Diffie-Hellman 

for public-key encryption; CAST-128, IDEA, and 3DES for symmetric encryption; and 

SHA-1 for hash coding. 

3. It has a wide range of applicability, from corporations that wish to select and enforce 

a standardized scheme for encrypting files and messages to individuals who wish to 

communicate securely with others worldwide over the Internet and other networks. 

4. It was not developed by, nor is it controlled by, any governmental or standards 

organization. For those with an instinctive distrust of "the establishment," this makes 

PGP attractive. 

5. PGP is now on an Internet standards track (RFC 3156). Nevertheless, PGP still has an 

aura of an antiestablishment endeavor. 

We begin with an overall look at the operation of PGP. Next, we examine how cryptographic 

keys are created and stored. Then, we address the vital issue of public key management. 

 
4.7.2 Notation 

Most of the notation used in this chapter has been used before, but a few terms are new. It is 

perhaps best to summarize those at the beginning. The following symbols are used: 

 

The PGP documentation often uses the term secret key to refer to a key paired with a public 

key in a public-key encryption scheme. As was mentioned earlier, this practice risks confusion 

with a secret key used for symmetric encryption. Hence, we will use the term private key 

instead. 
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4.7.3 Operational Description 

The actual operation of PGP, as opposed to the management of keys, consists of five services: 

authentication, confidentiality, compression, e-mail compatibility, and segmentation (Table 

4.5). We examine each of these in turn. 

Table 4.5: Summary of PGP Services 

Authentication 

Figure 4.a illustrates the digital signature service provided by PGP. This is the digital 

signature scheme. The sequence is as follows: 

1. The sender creates a message. 

2. SHA-1 is used to generate a 160-bit hash code of the message. 

3. The hash code is encrypted with RSA using the sender's private key, and the result is 

prepended to the message. 

4. The receiver uses RSA with the sender's public key to decrypt and recover the hash code. 

5. The receiver generates a new hash code for the message and compares it with the 

decrypted hash code. If the two match, the message is accepted as authentic. 
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Figure 4. : PGP Cryptographic Functions 

 

Confidentiality 

Another basic service provided by PGP is confidentiality, which is provided by encrypting 

messages to be transmitted or to be stored locally as files. In both cases, the symmetric 

encryption algorithm CAST-128 may be used. Alternatively, IDEA or 3DES may be used. The 

64-bit cipher feedback (CFB) mode is used. which can be described as follows: 

1. The sender generates a message and a random 128-bit number to be used as a session 

key for this message only. 

2. The message is encrypted, using CAST-128 (or IDEA or 3DES) with the session key. 

3. The session key is encrypted with RSA, using the recipient's public key, and is 

prepended to the message. 

4. The receiver uses RSA with its private key to decrypt and recover the session key. 

5. The session key is used to decrypt the message. 

 
Compression 

As a default, PGP compresses the message after applying the signature but before encryption. 

This has the benefit of saving space both for e-mail transmission and for file storage. 

The placement of the compression algorithm, indicated by Z for compression and Z-1 for 

decompression is critical: 

1. The signature is generated before compression for two reasons: 

a. It is preferable to sign an uncompressed message so that one can store only the 

uncompressed message together with the signature for future verification. If one signed a 

compressed document, then it would be necessary either to store a compressed version of the 

message for later verification or to recompress the message when verification is required. 

b. Even if one were willing to generate dynamically a recompressed message for verification, 

PGP's compression algorithm presents a difficulty. The algorithm is not deterministic; various 

implementations of the algorithm achieve different tradeoffs in running speed versus 

compression ratio and, as a result, produce different compressed forms. However, these 

different compression algorithms are interoperable because any version of the algorithm can 

correctly decompress the output of any other version. Applying the hash function and 
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signature after compression would constrain all PGP implementations to the same version of 

the compression algorithm. 

2. Message encryption is applied after compression to strengthen cryptographic security. 

Because the compressed message has less redundancy than the original plaintext, cryptanalysis 

is more difficult. 

 
E-mail Compatibility 

When PGP is used, at least part of the block to be transmitted is encrypted. If only the signature 

service is used, then the message digest is encrypted (with the sender's private key). If the 

confidentiality service is used, the message plus signature (if present) are encrypted (with a 

one-time symmetric key). Thus, part or all of the resulting block consists of a stream of arbitrary 

8-bit octets. However, many electronic mail systems only permit the use of blocks consisting 

of ASCII text. To accommodate this restriction, PGP provides the service of converting the 

raw 8-bit binary stream to a stream of printable ASCII characters. 

 
Figure 4. : Transmission and Reception of PGP Messages 

 
 

4.8 S/MIME 

S/MIME (Secure/Multipurpose Internet Mail Extension) is a security enhancement to the 

MIME Internet email format standard, based on technology from RSA Data Security. Although 

both PGP and S/MIME are on an IETF standards track, it appears likely that S/MIME will 

emerge as the industry standard for commercial and organizational use, while PGP will remain 

the choice for personal e-mail security for many users. S/MIME is defined in a number of 

documents, most importantly RFCs 3369, 3370, 3850 and 3851. 

To understand S/MIME, we need first to have a general understanding of the underlying 

e-mail format that it uses, namely MIME. But to understand the significance of MIME, we 

need to go back to the traditional e-mail format standard, RFC 822, which is still in common 

use. Accordingly, this section first provides an introduction to these two earlier standards and 

then moves on to a discussion of S/MIME. 

 
Multipurpose Internet Mail Extensions 

MIME is an extension to the RFC 822 framework that is intended to address some of the 

problems and limitations of the use of SMTP (Simple Mail Transfer Protocol) or some other 
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mail transfer protocol and RFC 822 for electronic mail. [RODR02] lists the following 

limitations of the SMTP/822 scheme: 

1. SMTP cannot transmit executable files or other binary objects. A number of schemes 

are in use for converting binary files into a text form that can be used by SMTP mail 

systems, including the popular UNIX UUencode/UUdecode scheme. However, none of 

these is a standard or even a de facto standard. 

2. SMTP cannot transmit text data that includes national language characters because 

these are represented by 8-bit codes with values of 128 decimal or higher, and SMTP 

is limited to 7-bit ASCII. 

3. SMTP servers may reject mail message over a certain size. 

4. SMTP gateways that translate between ASCII and the character code EBCDIC do not 

use a consistent set of mappings, resulting in translation problems. 

5. SMTP gateways to X.400 electronic mail networks cannot handle nontextual data 

included in X.400 messages. 

6. Some SMTP implementations do not adhere completely to the SMTP standards 

defined in RFC 821. Common problems include: 

Deletion, addition, or reordering of carriage return and linefeed 

Truncating or wrapping lines longer than 76 characters 

Removal of trailing white space (tab and space characters) 

Padding of lines in a message to the same length 

Conversion of tab characters into multiple space characters 

MIME is intended to resolve these problems in a manner that is compatible with existing 

RFC 822 implementations. The specification is provided in RFCs 2045 through 2049. 

 
Overview 

The MIME specification includes the following elements: 

1. Five new message header fields are defined, which may be included in an RFC 822 

header. These fields provide information about the body of the message. 

2. A number of content formats are defined, thus standardizing representations that 

support multimedia electronic mail. 

3. Transfer encodings are defined that enable the conversion of any content format into a 

form that is protected from alteration by the mail system. 

In this subsection, we introduce the five message header fields. The next two subsections deal 

with content formats and transfer encodings. 

The five header fields defined in MIME are as follows: 

● MIME-Version: Must have the parameter value 1.0. This field indicates that the message 

conforms to RFCs 2045 and 2046. 

● Content-Type: Describes the data contained in the body with sufficient detail that the 

receiving user agent can pick an appropriate agent or mechanism to represent the data to the 

user or otherwise deal with the data in an appropriate manner. 

● Content-Transfer-Encoding: Indicates the type of transformation that has been used to 

represent the body of the message in a way that is acceptable for mail transport. 

● Content-ID: Used to identify MIME entities uniquely in multiple contexts. 

● Content-Description: A text description of the object with the body; this is useful when 

the object is not readable (e.g., audio data). 

Any or all of these fields may appear in a normal RFC 822 header. A compliant implementation 

must support the MIME-Version, Content-Type, and Content-Transfer- Encoding fields; the 

Content-ID and Content-Description fields are optional and may be ignored by the recipient 

implementation. 
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MIME Content Types 

The bulk of the MIME specification is concerned with the definition of a variety of content 

types. This reflects the need to provide standardized ways of dealing with a wide variety of 

information representations in a multimedia environment. 

Below Table lists the content types specified in RFC 2046. There are seven different major 

types of content and a total of 15 subtypes. In general, a content type declares the general 

type of data, and the subtype specifies a particular format for that type of data. 

 
MIME Transfer Encodings 

The other major component of the MIME specification, in addition to content type 

specification, is a definition of transfer encodings for message bodies. The objective is to 

provide reliable delivery across the largest range of environments. 
 

 
S/MIME Functionality 

In terms of general functionality, S/MIME is very similar to PGP. Both offer the ability to sign 

and/or encrypt messages. In this subsection, we briefly summarize S/MIME capability. We 

then look in more detail at this capability by examining message formats and message 

preparation. 

Functions 

S/MIME provides the following functions: 
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● Enveloped data: This consists of encrypted content of any type and encrypted-content 

encryption keys for one or more recipients. 

● Signed data: A digital signature is formed by taking the message digest of the content to 

be signed and then encrypting that with the private key of the signer. The content plus signature 

are then encoded using base64 encoding. A signed data message can only be viewed by a 

recipient with S/MIME capability. 

● Clear-signed data: As with signed data, a digital signature of the content is formed. 

However, in this case, only the digital signature is encoded using base64. As a result, recipients 

without S/MIME capability can view the message content, although they cannot verify the 

signature. 

● Signed and enveloped data: Signed-only and encrypted-only entities may be nested, so that 

encrypted data may be signed and signed data or clear-signed data may be encrypted. 

 

Cryptographic Algorithms 

Cryptographic Algorithms Used in S/MIME 
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S/MIME Messages 

S/MIME makes use of a number of new MIME content types, which are shown in Table. All 

of the new application types use the designation PKCS. This refers to a set of public-key 

cryptography specifications issued by RSA Laboratories and made available for the S/MIME 

effort. 

S/MIME Content Types 

 

 
S/MIME Certificate Processing 

S/MIME uses public-key certificates that conform to version 3 of X.509. The key management 

scheme used by S/MIME is in some ways a hybrid between a strict X.509 certification 

hierarchy and PGP's web of trust. As with the PGP model, S/MIME managers and/or users 

must configure each client with a list of trusted keys and with certificate revocation lists. That 

is, the responsibility is local for maintaining the certificates needed to verify incoming 

signatures and to encrypt outgoing messages. On the other hand, the certificates are signed by 

certification authorities. 

User Agent Role 

An S/MIME user has several key-management functions to perform: 

● Key generation: The user of some related administrative utility (e.g., one associated with 

LAN management) MUST be capable of generating separate Diffie-Hellman and DSS key 

pairs and SHOULD be capable of generating RSA key pairs. Each key pair MUST be generated 

from a good source of nondeterministic random input and be protected in a secure fashion. A 

user agent SHOULD generate RSA key pairs with a length in the range of 768 to 1024 bits and 

MUST NOT generate a length of less than 512 bits. 

● Registration: A user's public key must be registered with a certification authority in order 

to receive an X.509 public-key certificate. 

● Certificate storage and retrieval: A user requires access to a local list of certificates in 

order to verify incoming signatures and to encrypt outgoing messages. Such a list could be 

maintained by the user or by some local administrative entity on behalf of a number of users. 

VeriSign Certificates 

There are several companies that provide certification authority (CA) services. For example, 

Nortel has designed an enterprise CA solution and can provide S/MIME support within an 

organization. There are a number of Internet-based CAs, including VeriSign, GTE, and the 

U.S. Postal Service. Of these, the most widely used is the VeriSign CA service, a brief 

description of which we now provide. VeriSign provides a CA service that is intended to be 

compatible with S/MIME and a variety of other applications. VeriSign issues X.509 certificates 

with the product name VeriSign Digital ID. As of early 1998, over 35,000 commercial Web 

sites were using VeriSign Server Digital IDs, and over a million consumer Digital IDs had been 

issued to users of Netscape and Microsoft browsers. 

The information contained in a Digital ID depends on the type of Digital ID and its use. At a 

minimum, each Digital ID contains 

● Owner's public key 



Cryptography Module-4 

       Prepared by Divyashree H S Dept. Of CSE, BrCE 41 

 

 

● Owner's name or alias 

● Expiration date of the Digital ID 

● Serial number of the Digital ID 

● Name of the certification authority that issued the Digital ID 

● Digital signature of the certification authority that issued the Digital ID 

Digital IDs can also contain other user-supplied information, including 

● Address 

● E-mail address 

● Basic registration information (country, zip code, age, and gender) 

VeriSign provides three levels, or classes, of security for public-key certificates, as summarized 

in Table . A user requests a certificate online at VeriSign's Web site or other participating Web 

sites. Class 1 and Class 2 requests are processed on line, and in most cases take only a few 

seconds to approve. 

Briefly, the following procedures are used: 

● For Class 1 Digital IDs, VeriSign confirms the user's e-mail address by sending a PIN and 

Digital ID pick-up information to the e-mail address provided in the application. 

● For Class 2 Digital IDs, VeriSign verifies the information in the application through an 

automated comparison with a consumer database in addition to performing all of the checking 

associated with a Class 1 Digital ID. Finally, confirmation is sent to the specified postal address 

alerting the user that a Digital ID has been issued in his or her name. 

● For Class 3 Digital IDs, VeriSign requires a higher level of identity assurance. An individual 

must prove his or her identity by providing notarized credentials or applying in person. 

VeriSign Public-Key Certificate Classes 
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Enhanced Security Services 

As of this writing, three enhanced security services have been proposed in an Internet draft. 

The details of these may change, and additional services may be added. The three services are 

as follows: 

● Signed receipts: A signed receipt may be requested in a SignedData object. Returning a 

signed receipt provides proof of delivery to the originator of a message and allows the 

originator to demonstrate to a third party that the recipient received the message. In essence, 

the recipient signs the entire original message plus original (sender's) signature and appends 

the new signature to form a new S/MIME message. 

● Security labels: A security label may be included in the authenticated attributes of a 

SignedData object. A security label is a set of security information regarding the sensitivity 

of the content that is protected by S/MIME encapsulation. The labels may be used for access 

control, by indicating which users are permitted access to an object. Other uses include priority 

(secret, confidential, restricted, and so on) or role based, describing which kind of people can 

see the information (e.g., patient's health-care team, medical billing agents, etc.). 

● Secure mailing lists: When a user sends a message to multiple recipients, a certain amount 

of per-recipient processing is required, including the use of each recipient's public key. The 

user can be relieved of this work by employing the services of an S/MIME Mail List Agent 

(MLA). An MLA can take a single incoming message, perform the recipient-specific 

encryption for each recipient, and forward the message. The originator of a message need 

only send the message to the MLA, with encryption performed using the MLA's public key. 

 
Domain Keys Identified Mail 

➢ a specification for cryptographically signing email messages 

➢ so signing domain claims responsibility 

➢ recipients / agents can verify signature 

➢ proposed Internet Standard RFC 4871 

➢ has been widely adopted 

Internet Mail Architecture 
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Email Threats 

➢ describes the problem space in terms of: 

⚫ range: low end, spammers, fraudsters 

⚫ capabilities in terms of where submitted, signed, volume, routing naming etc 

⚫ outside located attackers 

 
DKIM Strategy 

➢ transparent to user 

⚫ MSA sign 

⚫ MDA verify 

➢ for pragmatic reasons 
 

DCIM Functional Flow 
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Module-5: 

IP SECURITY 
 

Key Points 
➢ IP security (IPSec) is a capability that can be added to either current version of the 

Internet Protocol (IPv4 or IPv6), by means of additional headers. 

➢ IPSec encompasses three functional areas: authentication, confidentiality, and key 

management. 

➢ Authentication makes use of the HMAC message authentication code. Authentication 

can be applied to the entire original IP packet (tunnel mode) or to all of the packet 

except for the IP header (transport mode). 

➢ Confidentiality is provided by an encryption format known as encapsulating security 

payload. Both tunnel and transport modes can be accommodated. 

➢ IPSec defines a number of techniques for key management. 
 

The Internet community has developed application-specific security mechanisms in a number 

of application areas, including electronic mail (S/MIME, PGP), client/server (Kerberos), Web 

access (Secure Sockets Layer), and others. However, users have some security concerns that 

cut across protocol layers. 

For example, an enterprise can run a secure, private TCP/IP network by disallowing links to 

untrusted sites, encrypting packets that leave the premises, and authenticating packets that enter 

the premises. 

By implementing security at the IP level, an organization can ensure secure networking 

not only for applications that have security mechanisms but also for the many security-ignorant 

applications. 

IP-level security encompasses three functional areas: authentication, 

confidentiality, and key management. The authentication mechanism assures that a received 

packet was, in fact, transmitted by the party identified as the source in the packet header. In 

addition, this mechanism assures that the packet has not been altered in transit. The 

confidentiality facility enables communicating nodes to encrypt messages to prevent 

eavesdropping by third parties. The key management facility is concerned with the secure 

exchange of keys. 

 
5.1 IP Security Overview 
In 1994, the Internet Architecture Board(IAB) issued a report titled “ Security in the Internet 

Architecture”(RFC 1636). The report identified key areas for security mechanisms. Among 

these were the need to secure the network infrastructure from unauthorized monitoring and 

control of network traffic and the need to secure end-user-to-end-user traffic using 

authentication and encryption mechanism. 

To provide security, the IAB included authentication and encryption as necessary 

features in the next generation IP, which has been issued as IPv6. Fortunately, these security 

capabilities were designed to be usable both with the current IPv4 and the future IPv6. This 

means that vendors can begin offering these features now, and many vendors do now have 

some IPSec capability in their products. 
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5.1.1 Applications of IPSec 
IPSec provides the capability to secure communications across a LAN, across private and 

public WANs, and across the Internet. Examples of its use include the following: 

● Secure branch office connectivity over the Internet: A company can build a secure virtual 

private network over the Internet or over a public WAN. This enables a business to rely heavily 

on the Internet and reduce its need for private networks, saving costs and network management 

overhead. 

● Secure remote access over the Internet: An end user whose system is equipped with IP 

security protocols can make a local call to an Internet service provider (ISP) and gain secure 

access to a company network. This reduces the cost of toll charges for traveling employees and 

telecommuters. 

● Establishing extranet and intranet connectivity with partners: IPSec can be used to 

secure communication with other organizations, ensuring authentication and confidentiality 

and providing a key exchange mechanism. 

● Enhancing electronic commerce security: Even though some Web and electronic 

commerce applications have built-in security protocols, the use of IPSec enhances that security. 

The principal feature of IPSec that enables it to support these varied applications is that 

it can encrypt and/or authenticate all traffic at the IP level. Thus, all distributed applications, 

including remote logon, client/server, e-mail, file transfer, Web access, and so on, can be 

secured. 

 
Figure 5.1: An IPSec VPN Scenario 
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Figure 5.1a shows a simplified packet format for an IPSec option known as tunnel mode, 

described subsequently. Tunnel mode makes use of an IPSec function, a combined 

authentication/encryption function called Encapsulating Security Payload (ESP), and a key 

exchange function. For VPNs, both authentication and encryption are generally desired, 

because it is important both to 

1. Assure that unauthorized users do not penetrate the VPN. 

2. Assure that eavesdroppers on the Internet cannot read messages sent over the VPN. 

 

Figure 5.1b is a typical scenario of IPSec usage. An organization maintains LANs at 

dispersed locations. Nonsecure IP traffic is conducted on each LAN. For traffic offsite, through 

some sort of private or public WAN, IPSec protocols are used. These protocols operate in 

networking devices, such as a router or firewall, that connect each LAN to the outside world. 

The IPSec networking device will typically encrypt and compress all traffic going into the 

WAN, and decrypt and decompress traffic coming from the WAN; these operations are 

transparent to workstations and servers on the LAN. Secure transmission is also possible 

with individual users who dial into the WAN. Such user workstations must implement the 

IPSec protocols to provide security. 

 

5.1.2 Benefits of IPSec 
➢ When IPSec is implemented in a firewall or router, it provides strong security that can 

be applied to all traffic crossing the perimeter. Traffic within a company or workgroup 

does not incur the overhead of security-related processing. 

➢ IPSec in a firewall is resistant to bypass if all traffic from the outside must use IP, and 

the firewall is the only means of entrance from the Internet into the organization. 

➢ IPSec is below the transport layer (TCP, UDP) and so is transparent to applications. 

There is no need to change software on a user or server system when IPSec is 

implemented in the firewall or router. Even if IPSec is implemented in end systems, 

upper-layer software, including applications, is not affected. 

➢ IPSec can be transparent to end users. There is no need to train users on security 

mechanisms, issue keying material on a per-user basis, or revoke keying material 

when users leave the organization. 

➢ IPSec can provide security for individual users if needed. This is useful for offsite 

workers and for setting up a secure virtual subnetwork within an organization for 

sensitive applications. 

 

5.1.3 Routing Applications 
In addition to supporting end users and protecting premises systems and networks, IPSec can 

play a vital role in the routing architecture required for internetworking. IPSec can assure that 

● A router advertisement (a new router advertises its presence) comes from an authorized 

router 

● A neighbor advertisement (a router seeks to establish or maintain a neighbor relationship 

with a router in another routing domain) comes from an authorized router. 

● A redirect message comes from the router to which the initial packet was sent. 

● A routing update is not forged. 

Without such security measures, an opponent can disrupt communications or divert some 

traffic. Routing protocols such as OSPF should be run on top of security associations between 

routers that are defined by IPSec. 
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5.1.4 IPSec Documents 
The IPSec specification consists of numerous documents. The most important of these, issued 

in November of 1998, are RFCs 2401, 2402, 2406, and 2408: 

● RFC 2401: An overview of a security architecture 

● RFC 2402: Description of a packet authentication extension to IPv4 and IPv6 

● RFC 2406: Description of a packet encryption extension to IPv4 and IPv6 

● RFC 2408: Specification of key management capabilities 

Support for these features is mandatory for IPv6 and optional for IPv4. In both cases, the 

security features are implemented as extension headers that follow the main IP header. The 

extension header for authentication is known as the Authentication header; that for encryption 

is known as the Encapsulating Security Payload (ESP) header. 

In addition to these four RFCs, a number of additional drafts have been published by 

the IP Security Protocol Working Group set up by the IETF. The documents are divided into 

seven groups, as depicted in Figure 5.2 (RFC 2401): 

 
Figure 5.2: IPSec Document Overview 

• Architecture: Covers the general concepts, security requirements, definitions, and 

mechanisms defining IPSec technology. 

• Encapsulating Security Payload (ESP): Covers the packet format and general issues 

related to the use of the ESP for packet encryption and, optionally, authentication. 

• Authentication Header (AH): Covers the packet format and general issues related to 
the use of AH for packet authentication. 
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• Encryption Algorithm: A set of documents that describe how various encryption 

algorithms are used for ESP. 

• Authentication Algorithm: A set of documents that describe how various 
authentication algorithms are used for AH and for the authentication option of ESP. 

• Key Management: Documents that describe key management schemes. 

• Domain of Interpretation (DOI): Contains values needed for the other documents to 

relate to each other. These include identifiers for approved encryption and 

authentication algorithms, as well as operational parameters such as key lifetime. 

• Internet Key Exchange(IKE): this is a collection of documents describing the key 

management schemes for use with IPSec. The main specification is RFC 7296, Internet 
Key Exchange(IKEv2) protocol, but there are a number of related RFCs. 

• Cryptography algorithms: this categories encompasses a large set of documents that 

define and describe cryptographic algorithms for encryption, message authentication, 

pseudorandom function(PRFs), and cryptographic key exchange. 

• Other: there are a variety of other IPSec related RFCs including those dealing with 

security policy and management information base (MIB) content. 

 
5.1.5 IPSec Services 

IPSec provides security services at the IP layer by enabling a system to select required security 

protocols, determine the algorithm(s) to use for the service(s), and put in place any 

cryptographic keys required to provide the requested services. Two protocols are used to 

provide security: an authentication protocol designated by the header of the protocol, 

Authentication Header (AH); and a combined encryption/authentication protocol designated 

by the format of the packet for that protocol, Encapsulating Security Payload (ESP). The 

services are 

● Access control 

● Connectionless integrity 

● Data origin authentication 

● Rejection of replayed packets (a form of partial sequence integrity) 

● Confidentiality (encryption) 

● Limited traffic flow confidentiality 

 

Table 5.1 shows which services are provided by the AH and ESP protocols. For ESP, there 

are two cases: with and without the authentication option. Both AH and ESP are vehicles for 

access control, based on the distribution of cryptographic keys and the management of traffic 

flows relative to these security protocols. 

Table 5.1: IPSec Services 
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5.1.6 Transport and Tunnel Modes 
Both AH and ESP support two modes of use: transport and tunnel mode. The operation of these 

two modes is best understood in the context of a description of AH and ESP, respectively. Here 

we provide a brief overview. 

 

Transport Mode 

Transport mode provides protection primarily for upper-layer protocols. That is, transport 

mode protection extends to the payload of an IP packet. Examples include a TCP or UDP 

segment or an ICMP packet, all of which operate directly above IP in a host protocol stack. 

Typically, transport mode is used for end-to-end communication between two hosts (e.g., a 

client and a server, or two workstations). When a host runs AH or ESP over IPv4, the payload 

is the data that normally follow the IP header. For IPv6, the payload is the data that normally 

follow both the IP header and any IPv6 extensions headers that are present, with the possible 

exception of the destination options header, which may be included in the protection. 

ESP in transport mode encrypts and optionally authenticates the IP payload but not 

the IP header. AH in transport mode authenticates the IP payload and selected portions of the 

IP header. 

 

Tunnel Mode 

Tunnel mode provides protection to the entire IP packet. To achieve this, after the AH or ESP 

fields are added to the IP packet, the entire packet plus security fields is treated as the payload 

of new "outer" IP packet with a new outer IP header. The entire original, or inner, packet travels 

through a "tunnel" from one point of an IP network to another; no routers along the way are 

able to examine the inner IP header. Because the original packet is encapsulated, the new, larger 

packet may have totally different source and destination addresses, adding to the security. 

Tunnel mode is used when one or both ends of an SA are a security gateway, such as a firewall 

or router that implements IPSec. With tunnel mode, a number of hosts on networks behind 

firewalls may engage in secure communications without implementing IPSec. The unprotected 

packets generated by such hosts are tunneled through external networks by tunnel mode SAs 

set up by the IPSec software in the firewall or secure router at the boundary of the local network. 

 

Here is an example of how tunnel mode IPSec operates. Host A on a network generates 

an IP packet with the destination address of host B on another network. This packet is routed 

from the originating host to a firewall or secure router at the boundary of A's network. The 

firewall filters all outgoing packets to determine the need for IPSec processing. If this packet 

from A to B requires IPSec, the firewall performs IPSec processing and encapsulates the packet 

with an outer IP header. The source IP address of this outer IP packet is this firewall, and the 

destination address may be a firewall that forms the boundary to B's local network. This packet 

is now routed to B's firewall, with intermediate routers examining only the outer IP header. At 

B's firewall, the outer IP header is stripped off, and the inner packet is delivered to B. 

ESP in tunnel mode encrypts and optionally authenticates the entire inner IP packet, 

including the inner IP header. AH in tunnel mode authenticates the entire inner IP packet and 

selected portions of the outer IP header. 
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Table 5.2: summarizes transport and tunnel mode functionality. 

 

5.2 IP Security Policy 
Fundamental to the operation of IPSec is the concept of a security policy applied to each IP 

packet that transmit from a source to a destination. IPsec policy is determined primarily by the 

interaction of two databases, the security association database (SAD) and the security policy 

database (SPD). 

 

5.2.1 Security Associations 
A key concept that appears in both the authentication and confidentiality mechanisms for IP 

is the security association (SA). An association is a one-way relationship between a sender and 

a receiver that affords security services to the traffic carried on it. If a peer relationship is 

needed, for two-way secure exchange, then two security associations are required. Security 

services are afforded to an SA for the use of AH or ESP, but not both. 

A security association is uniquely identified by three parameters: 

● Security Parameters Index (SPI): A bit string assigned to this SA and having local 

significance only. The SPI is carried in AH and ESP headers to enable the receiving system 

to select the SA under which a received packet will be processed. 

● IP Destination Address: Currently, only unicast addresses are allowed; this is the address 

of the destination endpoint of the SA, which may be an end user system or a network system 

such as a firewall or router. 

● Security Protocol Identifier: This indicates whether the association is an AH or ESP 

security association. 

Hence, in any IP packet, the security association is uniquely identified by the 

Destination Address in the IPv4 or IPv6 header and the SPI in the enclosed extension header 

(AH or ESP). 

Figure 5.3 illustrates the relevant relationships. 

 

Figure 5.3: IPSec Architecture 
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5.2.2 Security Association Database 
In each IPSec implementation, there is a nominal Security Association Database that defines 

the parameters associated with each SA. A security association is normally defined by the 

following parameters in an SAD entry: 

• Security Parameter Index: A 32 bit value selected by the receiving end of an SA to 

uniquely identify the SA. In an SAD entry for an outbound SA, the SPI is used to 

construct the packet’s AH or ESP header. In an SAD entry for an inbound SA, the SPI 

is used to map traffic to the appropriate SA. 

• Sequence Number Counter: A 32-bit value used to generate the Sequence Number 

field in AH or ESP headers. 

• Sequence Counter Overflow: A flag indicating whether overflow of the Sequence 

Number Counter should generate an auditable event and prevent further transmission 

of packets on this SA. 

• Anti-Replay Window: Used to determine whether an inbound AH or ESP packet is a 

replay. 

• AH Information: Authentication algorithm, keys, key lifetimes, and related 
parameters being used with AH. 

• ESP Information: Encryption and authentication algorithm, keys, initialization values, 

key lifetimes, and related parameters being used with ESP. 

• Lifetime of This Security Association: A time interval or byte count after which an 
SA must be replaced with a new SA (and new SPI) or terminated, plus an indication 

of which of these actions should occur. 

• IPsec Protocol Mode: Tunnel, transport, or wildcard 

• Path MTU: any observed path maximum transmission unit and aging variables. 
The key management mechanism that is used to distribute keys is coupled to the 

authentication and privacy mechanisms only by way of the Security Parameters Index. Hence, 

authentication and privacy have been specified independent of any specific key management 

mechanism. 

IPSec provides the user with considerable flexibility in the way in which IPSec services are 

applied to IP traffic.SAs can be combined in a number of ways to yield the desired user 

configuration. Furthermore, IPSec provides a high degree of granularity in discriminating 

between traffic that is afforded IPSec protection and traffic that is allowed to bypass IPSec, in 

the former case relating IP traffic to specific SAs. 

 

5.2.3 Security Policy Database 
The means by which IP traffic is related to specific SAs (or no SA in the case of traffic allowed 

to bypass IPSec) is the nominal Security Policy Database (SPD). In its simplest form, an SPD 

contains entries, each of which defines a subset of IP traffic and points to an SA for that traffic. 

In more complex environments, there may be multiple entries that potentially relate to a single 

SA or multiple SAs associated with a single SPD entry. The reader is referred to the relevant 

IPSec documents for a full discussion. 

Each SPD entry is defined by a set of IP and upper-layer protocol field values, called 

selectors. In effect, these selectors are used to filter outgoing traffic in order to map it into a 

particular SA. Outbound processing obeys the following general sequence for each IP packet: 

 

1. Compare the values of the appropriate fields in the packet (the selector fields) against 

the SPD to find a matching SPD entry, which will point to zero or more SAs. 

2. Determine the SA if any for this packet and its associated SPI. 

3. Do the required IPSec processing (i.e., AH or ESP processing). 



Cryptography Module-5 

        Prepared by Divyashree H S Dept. Of CSE, BrCE 9 

 

 

The following selectors determine an SPD entry: 

Remote IP Address: This may be a single IP address, an enumerated list or range of addresses, 

or a wildcard (mask) address. The latter two are required to support more than one destination 

system sharing the same SA (e.g., behind a firewall). 

Local IP Address: This may be a single IP address, an enumerated list or range of addresses, 

or a wildcard (mask) address. The latter two are required to support more than one source 

system sharing the same SA (e.g., behind a firewall). 

Next Layer Protocol: The IP protocol header includes a field that designates the protocol 

operating over IP. This is an individual protocol number, ANY, or for IPv6 only, OPAQUE. 

If AH or ESP is used, then this IP protocol header immediately precedes the AH or ESP header 

in the packet. 

Name: a user identifies from the operating system. This is not a field in the IP or upper-layer 

headers but is available if IPsec is running on the same operating system as the user. 

Local and Remote Ports: These may be individual TCP or UDP port values, an enumerated 

list of ports, or a wildcard port. 

 

5.2.4 IP traffic processing 
IPsec is executed on a packet-by-packet basis. When IPSec is implemented, each outbound IP 

packet is processed by the IPsec logic before transmission, and each inbound packet 

isprocessed by the IPsec logic after reception and before passing the packet contents on to the 

next higher layer. We look at the logic of these two situations in turn. 

 

Outbound packets: Figure 5.4 highlights the main elements of IPsec processing for outbound 

traffic. A block of data from a higher layer, such as TCP, is passed down to the IP layer and an 

IP packet is formed, consisting of an IP header and an IP body. Then the following steps occur: 

1. IPsec searches the SPD for a match to this packet. 

2. If no match is found, then the packet is discarded and an error message is generated. 

3. If a match is found, further processing is determined by the first matching entry in the 

SPD. If the policy for this packet is DISCARD, then the packet is discarded. If the 

policy is BYPASS, then there is no further IPsec processing; the packet is forwarded to 

the network for transmission. 

4. If the policy is PROTECH, then a search is made of the SAD for a matching entry. If 

no entry is found, then IKE is invoked to create an SA with the appropriate keys and an 

entry is made in the SA. 

5. The matching entry in the SAD determines the processing for this packet. Either 

encryption, authentication, or both can be performed, and either transport or tunnel 

mode can be used. The packet is then forwarded to the network for transmission. 
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Figure 5.4: Processing Model for Outbound Packets 

Inbound packets: Figure 5.5 highlights the main elements of IPsec processing for inbound 

traffic. An incoming IP packet triggers the IPsec processing. The following steps occur: 

1. IPsec determines whether this is an unsecured IP packet or one that has ESP or AH 

headers/trailers, by examining the IP protocol field (IPv4) or Next header field (IPv6). 

2. If the packet is unsecured, IPsec searches the SPD for a match to this packet. If the first 

matching entry has a policy of BYPASS, the IP header is processed and stripped off 

and the packet body is delivered to the next higher layer, such as TCP. If the first 

matching entry has a policy of PROTECT or DISCARD, or if there is no matching 

entry, the packet is discarded. 

3. For a secured packet, IPsec searches the SAD. If no match is found, the packet is 

discarded. Otherwise, IPsec applies the appropriate ESP or AH processing. Then, the 

IP header is processed and stripped off and the packet body is delivered to the next 

higher layer, such as TCP. 
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Figure 5.5: Processing Model for inbound packets 

 

5.3 Encapsulating Security Payload 
The Encapsulating Security Payload provides confidentiality services, including 

confidentiality of message contents and limited traffic flow confidentiality. As an optional 

feature, ESP can also provide an authentication service. 

 

Figure 5.6: ESP Packet format 
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5.3.1 ESP Format 
Figure 5.6a shows the top-level format of an ESP packet. It contains the following fields. 

Security Parameters Index (32 bits): Identifies a security association. 

Sequence Number (32 bits): A monotonically increasing counter value; this provides an 

anti-replay function, as discussed for AH. 

Payload Data (variable): This is a transport-level segment (transport mode) or IP packet 

(tunnel mode) that is protected by encryption. 
Padding (0255 bytes): The purpose of this field is discussed later. 

Pad Length (8 bits): Indicates the number of pad bytes immediately preceding this field. 

Next Header (8 bits): Identifies the type of data contained in the payload data field by 

identifying the first header in that payload (for example, an extension header in IPv6, or an 

upper-layer protocol such as TCP). 

Integrity Check Value (variable): A variable-length field (must be an integral number of 32-

bit words) that contains the Integrity Check Value computed over the ESP packet minus the 

Authentication Data field. 

Two additional fields may be present in the payload as in figure 5.6b. an initialization value 

(IV) or nonce is present if this is required by the encryption or authentication encryption 

algorithm used for ESP. if tunnel mode is being used, then the IPsec implementation may add 

traffic flow confidentiality (TFC) padding after payload data and before the padding field. 

 
5.3.2 Encryption and Authentication Algorithms 
The Payload Data, Padding, Pad Length, and Next Header fields are encrypted by the ESP 

service. If the algorithm used to encrypt the payload requires cryptographic synchronization 

data, such as an initialization vector (IV), then these data may be carried explicitly at the 

beginning of the Payload Data field. If included, an IV is usually not encrypted, although it is 

often referred to as being part of the ciphertext. 

The ICV field is optional. It is present only if the integrity service is selected and is 

provided by either a separate integrity algorithm or a encryption mode algorithm that uses an 

ICV. The ICV is computed after the encryption is performed. This order of processing 

facilitates rapid detection and rejection of replayed or bogus packets by the receiver prior to 

decrypting the packets, hence potentially reducing the impact of denial of service (DoS) 

attacks. It also allows for the possibility of parallel processing of packets at the receiver that 

is decryption can take place in parallel with integrity checking. Note that because the ICV is 

not protected by encryption, a keyed integrity algorithm must be employed to compute the ICV. 

 

5.3.3 Padding 
The Padding field serves several purposes: 

● If an encryption algorithm requires the plaintext to be a multiple of some number of bytes 

(e.g., the multiple of a single block for a block cipher), the Padding field is used to expand the 

plaintext (consisting of the Payload Data, Padding, Pad Length, and Next Header fields) to the 

required length. 

● The ESP format requires that the Pad Length and Next Header fields be right aligned within 

a 32- bit word. Equivalently, the ciphertext must be an integer multiple of 32 bits. The Padding 

field is used to assure this alignment. 

● Additional padding may be added to provide partial traffic flow confidentiality by 

concealing the actual length of the payload. 
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5.3.4 Anti-Replay Service 
A replay attack is one in which an attacker obtains a copy of an authenticated packet and later 

transmits it to the intended destination. The receipt of duplicate, authenticated IP packets may 

disrupt service in some way or may have some other undesired consequence. The Sequence 

Number field is designed to thwart such attacks. First, we discuss sequence number generation 

by the sender, and then we look at how it is processed by the recipient. 

When a new SA is established, the sender initializes a sequence number counter to 0. 

Each time that a packet is sent on this SA, the sender increments the counter and places the 

value in the Sequence Number field. Thus, the first value to be used is 1. If anti-replay is 

enabled (the default), the sender must not allow the sequence number to cycle past 232 - 1 back 

to zero. Otherwise, there would be multiple valid packets with the same sequence number. If 

the limit of 232 - 1 is reached, the sender should terminate this SA and negotiate a new SA with 

a new key. 

Because IP is a connectionless, unreliable service, the protocol does not guarantee that 

packets will be delivered in order and does not guarantee that all packets will be delivered. 

Therefore, the IPSec authentication document dictates that the receiver should implement a 

window of size W, with a default of W = 64. The right edge of the window represents the highest 

sequence number, N, so far received for a valid packet. For any packet with a sequence number 

in the range from N W + 1 to N that has been correctly received (i.e., properly authenticated), 

the corresponding slot in the window is marked (Figure 5.7). Inbound processing proceeds as 

follows when a packet is received: 

1. If the received packet falls within the window and is new, the MAC is checked. If the 

packet is authenticated, the corresponding slot in the window is marked. 

2. If the received packet is to the right of the window and is new, the MAC is checked. If 

the packet is authenticated, the window is advanced so that this sequence number is the 

right edge of the window, and the corresponding slot in the window is marked. 

3. If the received packet is to the left of the window, or if authentication fails, the packet 

is discarded; this is an auditable event. 

 
Figure 5.7: Anti-replay mechanism 

 

5.3.5 Transport and Tunnel Modes 
Figure 5.8 shows two ways in which the IPSec ESP service can be used. In the upper part of 

the figure, encryption (and optionally authentication) is provided directly between two hosts. 

Figure 5.8b shows how tunnel mode operation can be used to set up a virtual private network. 

In this example, an organization has four private networks interconnected across the Internet. 

Hosts on the internal networks use the Internet for transport of data but do not interact with 

other Internet-based hosts. By terminating the tunnels at the security gateway to each internal 

network, the configuration allows the hosts to avoid implementing the security capability. 
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The former technique is support by a transport mode SA, while the latter technique uses a 

tunnel mode SA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Transport-Mode versus Tunnel-Mode Encryption 

Transport Mode ESP 

Transport mode ESP is used to encrypt and optionally authenticate the data carried by IP (e.g., 

a TCP segment), as shown in Figure 5.9a. For this mode using IPv4, the ESP header is inserted 

into the IP packet immediately prior to the transport-layer header (e.g., TCP, UDP, ICMP) and 

an ESP trailer (Padding, Pad Length, and Next Header fields) is placed after the IP packet; if 

authentication is selected, the ESP Authentication Data field is added after the ESP trailer. The 

entire transport-level segment plus the ESP trailer are encrypted. Authentication covers all of 

the ciphertext plus the ESP header. 

In the context of IPv6, ESP is viewed as an end-to-end payload; that is, it is not 

examined or processed by intermediate routers. Therefore, the ESP header appears after the 

IPv6 base header and the hop-by hop, routing, and fragment extension headers. The destination 

options extension header could appear before or after the ESP header, depending on the 

semantics desired. For IPv6, encryption covers the entire transport-level segment plus the ESP 

trailer plus the destination options extension header if it occurs after the ESP header. Again, 

authentication covers the ciphertext plus the ESP header. 
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Figure 5.9: Scope of ESP encryption and authentication 

 

Transport mode operation may be summarized as follows: 

1. At the source, the block of data consisting of the ESP trailer plus the entire transport- 

layer segment is encrypted and the plaintext of this block is replaced with its ciphertext 

to form the IP packet for transmission. Authentication is added if this option is selected. 

2. The packet is then routed to the destination. Each intermediate router needs to examine 

and process the IP header plus any plaintext IP extension headers but does not need to 

examine the ciphertext. 

3. The destination node examines and processes the IP header plus any plaintext IP 

extension headers. Then, on the basis of the SPI in the ESP header, the destination node 

decrypts the remainder of the packet to recover the plaintext transport-layer segment. 

Transport mode operation provides confidentiality for any application that uses it, thus avoiding 

the need to implement confidentiality in every individual application. This mode of operation 

is also reasonably efficient, adding little to the total length of the IP packet. One drawback to 

this mode is that it is possible to do traffic analysis on the transmitted packets. 

Tunnel Mode ESP 

Tunnel mode ESP is used to encrypt an entire IP packet (Figure 5.9b). For this mode, the ESP 

header is prefixed to the packet and then the packet plus the ESP trailer is encrypted. This 

method can be used to counter traffic analysis. 

Because the IP header contains the destination address and possibly source routing 

directives and hopby- hop option information, it is not possible simply to transmit the encrypted 

IP packet prefixed by the ESP header. Intermediate routers would be unable to process such a 

packet. Therefore, it is necessary to encapsulate the entire block (ESP header 
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plus ciphertext plus Authentication Data, if present) with a new IP header that will contain 

sufficient information for routing but not for traffic analysis. 

Whereas the transport mode is suitable for protecting connections between hosts that 

support the ESP feature, the tunnel mode is useful in a configuration that includes a firewall 

or other sort of security gateway that protects a trusted network from external networks. In this 

latter case, encryption occurs only between an external host and the security gateway or 

between two security gateways. This relieves hosts on the internal network of the processing 

burden of encryption and simplifies the key distribution task by reducing the number of needed 

keys. Further, it thwarts traffic analysis based on ultimate destination. 

Consider a case in which an external host wishes to communicate with a host on an 

internal network protected by a firewall, and in which ESP is implemented in the external 

host and the firewalls. The following steps occur for transfer of a transport-layer segment from 

the external host to the internal host: 

1. The source prepares an inner IP packet with a destination address of the target internal 

host. This packet is prefixed by an ESP header; then the packet and ESP trailer are 

encrypted and Authentication Data may be added. The resulting block is encapsulated 

with a new IP header (base header plus optional extensions such as routing and hop- 

by-hop options for IPv6) whose destination address is the firewall; this forms the outer 

IP packet. 

2. The outer packet is routed to the destination firewall. Each intermediate router needs to 

examine and process the outer IP header plus any outer IP extension headers but does 

not need to examine the ciphertext. 

3. The destination firewall examines and processes the outer IP header plus any outer IP 

extension headers. Then, on the basis of the SPI in the ESP header, the destination node 

decrypts the remainder of the packet to recover the plaintext inner IP packet. This 

packet is then transmitted in the internal network. 

4. The inner packet is routed through zero or more routers in the internal network to the 

destination host. 

Figure 5.10: Protocol Operation for ESP 
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5.4 Combining Security Associations 
An individual SA can implement either the AH or ESP protocol but not both. Sometimes a 

particular traffic flow will call for the services provided by both AH and ESP. Further, a 

particular traffic flow may require IPSec services between hosts and, for that same flow, 

separate services between security gateways, such as firewalls. In all of these cases, multiple 

SAs must be employed for the same traffic flow to achieve the desired IPSec services. The term 

security association bundle refers to a sequence of SAs through which traffic must be processed 

to provide a desired set of IPSec services. The SAs in a bundle may terminate at different 

endpoints or at the same endpoints. 

Security associations may be combined into bundles in two ways: 

● Transport adjacency: Refers to applying more than one security protocol to the same IP 

packet, without invoking tunneling. This approach to combining AH and ESP allows for only 

one level of combination; further nesting yields no added benefit since the processing is 

performed at one IPsec instance: the (ultimate) destination. 

● Iterated tunneling: Refers to the application of multiple layers of security protocols 

effected through IP tunneling. This approach allows for multiple levels of nesting, since each 

tunnel can originate or terminate at a different IPsec site along the path. 

The two approaches can be combined, for example, by having a transport SA between 

hosts travel part of the way through a tunnel SA between security gateways. One interesting 

issue that arises when considering SA bundles is the order in which authentication and 

encryption may be applied between a given pair of endpoints and the ways of doing so. We 

examine that issue next. Then we look at combinations of SAs that involve at least one tunnel. 

 

5.4.1 Authentication Plus Confidentiality 

Encryption and authentication can be combined in order to transmit an IP packet that has both 

confidentiality and authentication between hosts. We look at several approaches. 

ESP with Authentication Option 

This approach is illustrated in Figure 5.9. In this approach, the user first applies ESP to the data 

to be protected and then appends the authentication data field. There are actually two subcases: 

● Transport mode ESP: Authentication and encryption apply to the IP payload delivered to 

the host, but the IP header is not protected. 

● Tunnel mode ESP: Authentication applies to the entire IP packet delivered to the outer IP 

destination address (e.g., a firewall), and authentication is performed at that destination. The 

entire inner IP packet is protected by the privacy mechanism, for delivery to the inner IP 

destination. 

For both cases, authentication applies to the ciphertext rather than the plaintext. 

Transport Adjacency 

Another way to apply authentication after encryption is to use two bundled transport SAs, with 

the inner being an ESP SA and the outer being an AH SA. In this case ESP is used without its 

authentication option. Because the inner SA is a transport SA, encryption is applied to the IP 

payload. The resulting packet consists of an IP header (and possibly IPv6 header extensions) 

followed by an ESP. AH is then applied in transport mode, so that authentication covers the 

ESP plus the original IP header (and extensions) except for mutable fields. The advantage of 

this approach over simply using a single ESP SA with the ESP authentication option is that the 

authentication covers more fields, including the source and destination IP addresses. The 

disadvantage is the overhead of two SAs versus one SA. 
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Transport-Tunnel Bundle 

The use of authentication prior to encryption might be preferable for several reasons. First, 

because the authentication data are protected by encryption, it is impossible for anyone to 

intercept the message and alter the authentication data without detection. Second, it may be 

desirable to store the authentication information with the message at the destination for later 

reference. It is more convenient to do this if the authentication information applies to the 

unencrypted message; otherwise the message would have to be reencrypted to verify the 

authentication information. 

One approach to applying authentication before encryption between two hosts is to use 

a bundle consisting of an inner AH transport SA and an outer ESP tunnel SA. In this case, 

authentication is applied to the IP payload plus the IP header (and extensions) except for 

mutable fields. The resulting IP packet is then processed in tunnel mode by ESP; the result is 

that the entire, authenticated inner packet is encrypted and a new outer IP header (and 

extensions) is added. 

 

5.4.2 Basic Combinations of Security Associations 
The IPSec Architecture document lists four examples of combinations of SAs that must be 

supported by compliant IPSec hosts (e.g., workstation, server) or security gateways (e.g. 

firewall, router). These are illustrated in Figure 5.11. The lower part of each case in the figure 

represents the physical connectivity of the elements; the upper part represents logical 

connectivity via one or more nested SAs. Each SA can be either AH or ESP. For host-to-host 

SAs, the mode may be either transport or tunnel; otherwise it must be tunnel mode. 

 
Figure 5.11: Basic Combinations of Security Associations 

 

In Case 1, all security is provided between end systems that implement IPSec. For any two end 

systems to communicate via an SA, they must share the appropriate secret keys. Among the 

possible combinations: 

a. AH in transport mode 

b. ESP in transport mode 

c. ESP followed by AH in transport mode (an ESP SA inside an AH SA) 

d. Any one of a, b, or c inside an AH or ESP in tunnel mode 
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For Case 2, security is provided only between gateways (routers, firewalls, etc.) and no hosts 

implement IPSec. This case illustrates simple virtual private network support. The security 

architecture document specifies that only a single tunnel SA is needed for this case. The 

tunnel could support AH, ESP, or ESP with the authentication option. Nested tunnels are not 

required because the IPSec services apply to the entire inner packet. 

Case 3 builds on Case 2 by adding end-to-end security. The same combinations discussed for 

cases 1 and 2 are allowed here. The gateway-to-gateway tunnel provides either authentication 

or confidentiality or both for all traffic between end systems. When the gateway-to-gateway 

tunnel is ESP, it also provides a limited form of traffic confidentiality. Individual hosts can 

implement any additional IPSec services required for given applications or given users by 

means of end-to-end SAs. 

Case 4 provides support for a remote host that uses the Internet to reach an organization's 

firewall and then to gain access to some server or workstation behind the firewall. Only tunnel 

mode is required between the remote host and the firewall. As in Case 1, one or two SAs may 

be used between the remote host and the local host. 

 
5.5 INTERNET KEY EXCHANGE 

The key management portion of IPSec involves the determination and distribution of secret 

keys. A typical requirement is four keys for communication between two applications: transmit 

and receive pairs for both AH and ESP. The IPSec Architecture document mandates support 

for two types of key management: 

● Manual: A system administrator manually configures each system with its own keys and 

with the keys of other communicating systems. This is practical for small, relatively static 

environments. 

● Automated: An automated system enables the on-demand creation of keys for SAs and 

facilitates the use of keys in a large distributed system with an evolving configuration. The 

default automated key management protocol for IPSec is referred to as ISAKMP/Oakley and 

consists of the following elements: 

● Oakley Key Determination Protocol: Oakley is a key exchange protocol based on the 

Diffie-Hellman algorithm but providing added security. Oakley is generic in that it does not 

dictate specific formats. 

● Internet Security Association and Key Management Protocol (ISAKMP): ISAKMP 

provides a framework for Internet key management and provides the specific protocol support, 

including formats, for negotiation of security attributes. 

ISAKMP by itself does not dictate a specific key exchange algorithm; rather, ISAKMP 

consists of a set of message types that enable the use of a variety of key exchange algorithms. 

Oakley is the specific key exchange algorithm mandated for use with the initial version of 

ISAKMP. 

 

5.5.1 Key Determination Protocol 
IKE key determination is a refinement of the Diffie-Hellman key exchange algorithm. Recall 

that Diffie-Hellman involves the following interaction between users A and B. There is prior 

agreement on two global parameters: q, a large prime number; and a a primitive root of q. A 

selects a random integer XA as its private key, and transmits to B its public key YA = aXA mod 
q. Similarly, B selects a random integer XB as its private key and transmits to A its public key 

YB = aXB mod q. Each side can now compute the secret session key: 

 
The Diffie-Hellman algorithm has two attractive features: 

● Secret keys are created only when needed. There is no need to store secret keys for a long 

period of time, exposing them to increased vulnerability. 
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● The exchange requires no preexisting infrastructure other than an agreement on the global 

parameters. 

However, there are a number of weaknesses to Diffie-Hellman: 

● It does not provide any information about the identities of the parties. 

● It is subject to a man-in-the-middle attack, in which a third party C impersonates B while 

communicating with A and impersonates A while communicating with B. Both A and B end 

up negotiating a key with C, which can then listen to and pass on traffic. The man-in-the- 

middle attack proceeds as follows: 

1. B sends his public key YB in a message addressed to A . 

2. The enemy (E) intercepts this message. E saves B's public key and sends a message to A that 

has B's User ID but E's public key YE. This message is sent in such a way that it appears as 

though it was sent from B's host system. A receives E's message and stores E's public key with 

B's User ID. Similarly, E sends a message to B with E's public key, purporting to come from 

A. 

3. B computes a secret key K1 based on B's private key and YE. A computes a secret key K2 

based on A's private key and YE. E computes K1 using E's secret key XE and YB and computer 

K2 using YE and YB. 

4. From now on E is able to relay messages from A to B and from B to A, appropriately 

changing their encipherment en route in such a way that neither A nor B will know that they 

share their communication with E. 

● It is computationally intensive. As a result, it is vulnerable to a clogging attack, in which an 

opponent requests a high number of keys. The victim spends considerable computing resources 

doing useless modular exponentiation rather than real work. 

IKE key determination is designed to retain the advantages of Diffie-Hellman while 

countering its weaknesses. 

Features of IKE key determination 

The IKE key determination algorithm is characterized by five important features: 

1. It employs a mechanism known as cookies to thwart clogging attacks. 

2. It enables the two parties to negotiate a group; this, in essence, specifies the global 

parameters of the Diffie-Hellman key exchange. 

3. It uses nonces to ensure against replay attacks. 

4. It enables the exchange of Diffie-Hellman public key values. 

5. It authenticates the Diffie-Hellman exchange to thwart man-in-the-middle attacks. 

 

We have already discussed Diffie-Hellman. Let us look the remainder of these elements in turn. 

First, consider the problem of clogging attacks. In this attack, an opponent forges the source 

address of a legitimate user and sends a public Diffie-Hellman key to the victim. The victim 

then performs a modular exponentiation to compute the secret key. Repeated messages of this 

type can clog the victim's system with useless work. The cookie exchange requires that each 

side send a pseudorandom number, the cookie, in the initial message, which the other side 

acknowledges. This acknowledgment must be repeated in the first message of the Diffie-

Hellman key exchange. If the source address was forged, the opponent gets no answer. Thus, 

an opponent can only force a user to generate acknowledgments and not to perform the Diffie-

Hellman calculation. 

IKE mandates that cookie generation satisfy three basic requirements: 

1. The cookie must depend on the specific parties. This prevents an attacker from obtaining 

a cookie using a real IP address and UDP port and then using it to swamp the victim 

with requests from randomly chosen IP addresses or ports. 

2. It must not be possible for anyone other than the issuing entity to generate cookies that 

will be accepted by that entity. This implies that the issuing entity will use local 
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secret information in the generation and subsequent verification of a cookie. It must not 

be possible to deduce this secret information from any particular cookie. The point of 

this requirement is that the issuing entity need not save copies of its cookies, which are 

then more vulnerable to discovery, but can verify an incoming cookie acknowledgment 

when it needs to. 

3. The cookie generation and verification methods must be fast to thwart attacks intended 

to sabotage processor resources. 

The recommended method for creating the cookie is to perform a fast hash (e.g., MD5) over 

the IP Source and Destination addresses, the UDP Source and Destination ports, and a locally 

generated secret value. 

Oakley (IKE key determination) supports the use of different groups for the Diffie-Hellman 

key exchange. Each group includes the definition of the two global parameters and the identity 

of the algorithm. The current specification includes the following groups: 

The first three groups are the classic Diffie-Hellman algorithm using modular exponentiation. 

The last two groups use the elliptic curve analog to Diffie-Hellman. 

Oakley employs nonces to ensure against replay attacks. Each nonce is a locally generated 

pseudorandom number. Nonces appear in responses and are encrypted during certain portions 

of the exchange to secure their use. 

Three different authentication methods can be used with Oakley: 

● Digital signatures: The exchange is authenticated by signing a mutually obtainable hash; 

each party encrypts the hash with its private key. The hash is generated over important 

parameters, such as user IDs and nonces. 
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● Public-key encryption: The exchange is authenticated by encrypting parameters such as 

IDs and nonces with the sender's private key. 

● Symmetric-key encryption: A key derived by some out-of-band mechanism can be used 

to authenticate the exchange by symmetric encryption of exchange parameters. 

 
IKEv2 Exchanges 

The Oakley specification (IKEv2 protocol) includes a number of examples of exchanges that 

are allowable under the protocol. To give a flavor of Oakley, we present one example, called 

aggressive key exchange in the specification, so called because only three messages are 

exchanged. 

Figure 5.12 shows the aggressive key exchange protocol. In the first step, the initiator (I) 

transmits a cookie, the group to be used, and I's public Diffie-Hellman key for this exchange. 

I also indicates the offered public-key encryption, hash, and authentication algorithms to be 

used in this exchange. Also included in this message are the identifiers of I and the responder 

(R) and I's nonce for this exchange. Finally, I appends a signature using I's private key that 

signs the two identifiers, the nonce, the group, the Diffie-Hellman public key, and the offered 

algorithms. 

Figure 5.12: IKEv2 Exchanges 

When R receives the message, R verifies the signature using I's public signing key. R 

acknowledges the message by echoing back I's cookie, identifier, and nonce, as well as the 

group. R also includes in the message a cookie, R's Diffie-Hellman public key, the selected 

algorithms (which must be among the offered algorithms), R's identifier, and R's nonce for 
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this exchange. Finally, R appends a signature using R's private key that signs the two 

identifiers, the two nonces, the group, the two Diffie-Hellman public keys, and the selected 

algorithms. 

When I receives the second message, I verifies the signature using R's public key. The 

nonce values in the message assure that this is not a replay of an old message. To complete the 

exchange, I must send a message back to R to verify that I has received R's public key. 

 
Header and payload formats 

IKE defines procedures and packet formats to establish, negotiate, modify, and delete security 

associations. As part of SA establishment, ISAKMP defines payloads for exchanging key 

generation and authentication data. These payload formats provide a consistent framework 

independent of the specific key exchange protocol, encryption algorithm, and authentication 

mechanism. 

 
IKE Header Format 

An ISAKMP (IKE) message consists of an ISAKMP header followed by one or more payloads. 

All of this is carried in a transport protocol. The specification dictates that implementations 

must support the use of UDP for the transport protocol. 

Figure 5.13a shows the header format for an ISAKMP(IKE) message. It consists of the 

following fields: 

● Initiator SPI (64 bits): Cookie of entity that initiated SA establishment, SA notification, or 

SA deletion. 

● Responder SPI (64 bits): Cookie of responding entity; null in first message from initiator. 

● Next Payload (8 bits): Indicates the type of the first payload in the message; 

● Major Version (4 bits): Indicates major version of ISAKMP in use. 

● Minor Version (4 bits): Indicates minor version in use. 

● Exchange Type (8 bits): Indicates the type of exchange; 

● Flags (8 bits): Indicates specific options set for this ISAKMP exchange. Two bits so far 

defined: The Encryption bit is set if all payloads following the header are encrypted using the 

encryption algorithm for this SA. The Commit bit is used to ensure that encrypted material is 

not received prior to completion of SA establishment. 

● Message ID (32 bits): Unique ID for this message. 

● Length (32 bits): Length of total message (header plus all payloads) in octets. 

 
Figure 5.13 IKE formats 
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IKE Payload Types 

All IKE (ISAKMP) payloads begin with the same generic payload header shown in Figure 

5.13b. The Next Payload field has a value of 0 if this is the last payload in the message; 

otherwise its value is the type of the next payload. The Payload Length field indicates the length 

in octets of this payload, including the generic payload header. 

Table 5.3 summarizes the payload types defined for IKE (ISAKMP), and lists the fields, 

or parameters, that are part of each payload. The SA payload is used to begin the establishment 

of an SA. In this payload, the Domain of Interpretation parameter identifies the DOI under 

which negotiation is taking place. The IPSec DOI is one example, but ISAKMP can be used in 

other contexts. The Situation parameter defines the security policy for this negotiation; in 

essence, the levels of security required for encryption and confidentiality are specified (e.g., 

sensitivity level, security compartment). 

 

The Proposal payload contains information used during SA negotiation. The payload indicates 

the protocol for this SA (ESP or AH) for which services and mechanisms are being negotiated. 

The payload also includes the sending entity's SPI and the number of transforms. Each 

transform is contained in a transform payload. The use of multiple transform payloads enables 

the initiator to offer several possibilities, of which the responder must choose one or reject the 

offer. 

The Transform payload defines a security transform to be used to secure the communications 

channel for the designated protocol. The Transform # parameter serves to identify this 

particular payload so that the responder may use it to indicate acceptance of this transform. The 

Transform-ID and Attributes fields identify a specific transform (e.g., 3DES for ESP, HMAC-

SHA-1-96 for AH) with its associated attributes (e.g., hash length). 

Table 5.3 IKE payload types 

 
The Key Exchange payload can be used for a variety of key exchange techniques, including 

Oakley, Diffie-Hellman, and the RSA-based key exchange used by PGP. The Key Exchange 

data field contains the data required to generate a session key and is dependent on the key 

exchange algorithm used. 
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The Identification payload is used to determine the identity of communicating peers and may 

be used for determining authenticity of information. Typically the ID Data field will contain 

an IPv4 or IPv6 address. 

The Certificate payload transfers a public-key certificate. The Certificate Encoding field 

indicates the type of certificate or certificate-related information, which may include the 

following: 

● PKCS #7 wrapped X.509 certificate 

● PGP certificate 

● DNS signed key 

● X.509 certificate signature 

● X.509 certificate key exchange 

● Kerberos tokens 

● Certificate Revocation List (CRL) 

● Authority Revocation List (ARL) 

● SPKI certificate 

At any point in an ISAKMP exchange, the sender may include a Certificate Request payload 

to request the certificate of the other communicating entity. The payload may list more than 

one certificate type that is acceptable and more than one certificate authority that is acceptable. 

The Hash payload contains data generated by a hash function over some part of the message 

and/or ISAKMP state. This payload may be used to verify the integrity of the data in a message 

or to authenticate negotiating entities. 

The Signature payload contains data generated by a digital signature function over some part 

of the message and/or ISAKMP state. This payload is used to verify the integrity of the data in 

a message and may be used for nonrepudiation services. 

The Nonce payload contains random data used to guarantee liveness during an exchange and 

protect against replay attacks. 

The Notification payload contains either error or status information associated with this SA 

or this SA negotiation. 
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Responder-Lifetime: Communicates the SA lifetime chosen by the responder. 

● Replay-Status: Used for positive confirmation of the responder's election of whether or 

not the responder will perform anti-replay detection. 

● Initial-Contact: Informs the other side that this is the first SA being established with the 

remote system. The receiver of this notification might then delete any existing SA's it has for 

the sending system under the assumption that the sending system has rebooted and no longer 

has access to those SAs. 

The Delete payload indicates one or more SAs that the sender has deleted from its database 

and that therefore are no longer valid. 

 

5.6 Cryptographic Suits 

 

Figure 5.14: Cryptographic suits for IPSec 
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Three types of secret key algorithms are used: 

Three categories of secret key algorithms are listed: 

 

 
For the Diffie-Hellman algorithm, the use of elliptic curve groups modulo a prime is specified. 

For authentication, elliptic curve digital signatures are listed. The original IKEv2 documents 

used RSA based digital signatures. Equivalent or greater strength can be achieved using ECC 

with fewer key bits. 


